CHƯƠNG IV. PHÂN SỐ - CÁC PHÉP TÍNH VỚI PHÂN SỐ. GIỚI THIỆU HÌNH THOI

36. Luyện tập chung trang 138, 139

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 1
Bài 2
Bài 3
Bài 4
Bài 5

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 1
Bài 2
Bài 3
Bài 4
Bài 5

Bài 1

Trong các phép tính sau, phép tính nào làm đúng?

\(\eqalign{
& a)\,\,{5 \over 6} + {1 \over 3} = {{5 + 1} \over {6 + 3}} = {6 \over 9} = {2 \over 3}; \cr 
& b)\,\,{5 \over 6} - {1 \over 3} = {{5 - 1} \over {6 - 3}} = {4 \over 3}; \cr 
& c)\,\,{5 \over 6} \times {1 \over 3} = {{5 \times 1} \over {6 \times 3}} = {5 \over {18}}; \cr 
& d)\,\,{5 \over 6}:{1 \over 3} = {1 \over 3} \times {5 \over 6} = {{1 \times 5} \over {3 \times 6}} = {5 \over {18}} \cdot \cr} \)

Phương pháp giải:

Áp dụng các quy tắc sau:

- Muốn cộng (hoặc trừ) hai phân số ta quy đồng mẫu số hai phân số rồi cộng (hoặc trừ) hai phân số sau khi quy đồng.

- Muốn nhân hai phân số ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.

- Muốn chia hai phân số ta lấy phân số thứ nhất nhân với phân số thứ hai đảo ngược.

Lời giải chi tiết:

Phép tính c) đúng.

Phép tính a), b) sai vì muốn cộng (hoặc trừ) hai phân số khác mẫu số ta quy đồng mẫu số, rồi cộng (hoặc trừ) hai phân số đã quy đồng mẫu số.

Phép tính d) sai vì muốn chia một phân số cho một phân số ta lấy phân số thứ nhất nhân với phân số thứ hai đảo ngược.

Bài 2

Tính:

\(\eqalign{
& a)\,\,{1 \over 2} \times {1 \over 4} \times {1 \over 6};\,\,\, \cr 
& b)\,\,{1 \over 2} \times {1 \over 4}:{1 \over 6}; \cr 
& c)\,\,{1 \over 2}:{1 \over 4} \times {1 \over 6} \cdot \cr} \)

Phương pháp giải:

Biểu thức chỉ có phép nhân và phép chia thì ta tính lần lượt từ trái sang phải.

Lời giải chi tiết:

a) $\frac{1}{2} \times \frac{1}{4} \times \frac{1}{6} = \frac{{1 \times 1 \times 1}}{{2 \times 4 \times 6}} = \frac{1}{{48}}$

b) $\frac{1}{2} \times \frac{1}{4}:\frac{1}{6} = \frac{1}{2} \times \frac{1}{4} \times \frac{6}{1} = \frac{{1 \times 1 \times 6}}{{2 \times 4 \times 1}} = \frac{6}{8} = \frac{3}{4}$

c) $\frac{1}{2}:\frac{1}{4} \times \frac{1}{6} = \frac{1}{2} \times \frac{4}{1} \times \frac{1}{6} = \frac{{1 \times 4 \times 1}}{{2 \times 1 \times 6}} = \frac{4}{{12}} = \frac{1}{3}$

Bài 3

Tính: 

\(\eqalign{
& a)\,\,{5 \over 2} \times {1 \over 3} + {1 \over 4}; \cr 
& b)\,\,{5 \over 2} + {1 \over 3} \times {1 \over 4}; \cr 
& c)\,\,{5 \over 2} - {1 \over 3}:{1 \over 4} \cdot \cr} \)

Phương pháp giải:

Biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thực hiện phép tính nhân, chia trước, thực hiện phép cộng, trừ sau.

Lời giải chi tiết:

\(\eqalign{
& a)\,\,{5 \over 2} \times {1 \over 3} + {1 \over 4} = {5 \over 6} + {1 \over 4}  = {{10} \over {12}} + {3 \over {12}} = {{13} \over {12}} \cr 
& b)\,\,{5 \over 2} + {1 \over 3} \times {1 \over 4} = {5 \over 2} + {1 \over {12}}  = {{30} \over {12}} + {1 \over {12}} = {{31} \over {12}} \cr}  \) 

\( \displaystyle c)\,\,{5 \over 2} - {1 \over 3}:{1 \over 4} = {5 \over 2} - {1 \over 3} \times {4 \over 1} \)

\( \displaystyle = {5 \over 2} - {4 \over 3} \)\( \displaystyle= {{15} \over 6} - {8 \over 6} = {7 \over 6} \) 

Bài 4

Video hướng dẫn giải

Người ta cho một vòi nước chảy vào bể chưa có nước. Lần thứ nhất chảy vào \( \displaystyle {3 \over 7}\) bể, lần thứ hai chảy vào thêm \( \displaystyle {2 \over 5}\) bể. Hỏi còn mấy phần của bể chưa có nước?

Phương pháp giải:

- Coi bể nước khi đầy nước là \(1\) đơn vị.

- Tính số phần bể đã có nước = số phần nước chảy vào bể lần thứ nhất \(+\) số phần nước chảy vào bể lần thứ hai.

- Số phần bể chưa có nước = \(1-\) số phần bể đã có nước.

Lời giải chi tiết:

Tóm tắt

Lần thứ nhất: \( \displaystyle {3 \over 7}\) bể

Lần thứ hai chảy thêm: \( \displaystyle {2 \over 5}\) bể

Còn lại: .... phần bể?

Bài giải

Coi bể nước khi đầy nước là \(1\) đơn vị.

Số phần bể có nước là:

\( \displaystyle {3 \over 7} + {2 \over 5} = {{29} \over {35}}\) (bể)

Số phần bể còn lại chưa chứa nước là: 

 $1 - \frac{{29}}{{35}} = \frac{{35}}{{35}} - \frac{{29}}{{35}} = \frac{6}{{35}}$ (bể)

                  Đáp số: \( \displaystyle{6 \over {35}}\) bể.

Bài 5

Một kho chứa \(23\; 450kg\) cà phê. Lần đầu lấy ra \(2710kg\) cà phê, lần sau lấy ra gấp đôi lần đầu. Hỏi trong kho còn lại bao nhiêu ki-lô-gam cà phê ?

Phương pháp giải:

- Tính số cà phê lấy ra lần sau = số cà phê lấy ra lần đầu \(\times\; 2\).

- Tính số cà phê lấy ra hai lần = số cà phê lấy ra lần đầu \(+\) số cà phê lấy ra lần sau.

- Tính số cà phê còn lại = số cà phê ban đầu \(-\) số cà phê lấy ra hai lần.

Lời giải chi tiết:

Tóm tắt

Kho chứa: 23 450 kg cà phê

Lần đầu lấy ra: 2710kg

Lần sau lấy: gấp đôi lần đầu

Còn lại: ....kg?

Bài giải

Lần sau đã lấy ra số ki-lô-gam cà phê là:

\(2710 × 2 = 5420\; (kg)\)

Cả hai lần đã lấy ra số ki-lô-gam cà phê là:

\( 2710 + 5420 = 8130 \;(kg) \)

Trong kho còn lại số ki-lô-gam cà phê là:

\(23 450 – 8130 = 15 320\; (kg)\)

                                      Đáp số: 15 320 kg cà phê

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved