VBT TOÁN 4 - TẬP 2

Bài 111 : Luyện tập chung

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 1
Bài 2
Bài 3
Bài 4
Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 1
Bài 2
Bài 3
Bài 4

Bài 1

Điền dấu \(\displaystyle(>,\,=,\,<)\) thích hợp vào chỗ chấm :

a) \(\displaystyle{6 \over {11}}...{8 \over {11}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\quad \quad\quad\quad{9 \over {15}}...{6 \over {10}}\)

b) \(\displaystyle{8 \over 5}...{8 \over 7}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\quad \quad\quad\quad{{21} \over {23}}...{{21} \over {27}}\)

c) \(\displaystyle{7 \over 9}...{9 \over 7}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\quad \quad\quad\quad{{95} \over {96}}...{{96} \over {95}}\)

Phương pháp giải:

Áp dụng các quy tắc so sánh hai phân số có cùng tử số hoặc cùng mẫu số, so sánh hai phân số khác mẫu số, so sánh phân số với \(1\). 

Lời giải chi tiết:

a) \(\displaystyle{6 \over {11}}<{8 \over {11}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\quad \quad\quad\quad{9 \over {15}}={6 \over {10}}\)

b) \(\displaystyle{8 \over 5}>{8 \over 7}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\quad \quad\quad\quad{{21} \over {23}}>{{21} \over {27}}\)

c) \(\displaystyle{7 \over 9}<{9 \over 7}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\quad \quad\quad\quad{{95} \over {96}}<{{96} \over {95}}\)

Bài 2

a) Viết các phân số \(\displaystyle{8 \over {11}};{8 \over 5};{8 \over 7}\) theo thứ tự từ bé đến lớn.

b) Viết các phân số \(\displaystyle{{12} \over {10}};{{15} \over {25}};{{16} \over {20}}\) theo thứ tự lớn đến bé.

Phương pháp giải:

So sánh các phân số đã cho rồi sắp xếp các phân số theo thứ tự từ bé đến lớn hoặc từ lớn đến bé. 

Lời giải chi tiết:

 a) So sánh các phân số ta có :  \(\displaystyle{8 \over {11}}<{8 \over 7}<{8 \over 5}\)

Vậy các phân số viết theo thứ tự từ bé đến lớn: \(\displaystyle{8 \over {11}};{8 \over 7};{8 \over 5}.\)

b) Rút gọn các phân số trên ta được :

\(\dfrac{12}{10} = \dfrac{12:2}{10:2} = \dfrac{6}{5}\)   ;           \(\dfrac{15}{25} = \dfrac{15:5}{25:5} = \dfrac{3}{5}\)

\(\dfrac{16}{20} = \dfrac{16:4}{20:4} = \dfrac{4}{5}\)

Ba phân số trên sau khi rút gọn thì có cùng mẫu số. Trong các phân số có cùng mẫu số, phân số nào có tử lớn hơn thì phân số đó lớn hơn.

Do đó \(\displaystyle{6 \over 5} > {4 \over 5} > {3 \over 5}\), hay  \(\displaystyle{{12} \over {10}} > {{16} \over {20}} > {{15} \over {25}}\)

Vậy các phân số viết theo thứ tự lớn đến bé là : \(\displaystyle{{12} \over {10}} ; {{16} \over {20}} ; {{15} \over {25}}.\)

Bài 3

Viết phân số có tử số, mẫu số là số lẻ lớn hơn 6 và bé hơn 10.

a) Phân số đó bé hơn \(1\).

b) Phân số đó bằng \(1\).

c) Phân số đó lớn hơn \(1\).

Phương pháp giải:

- Tìm tử số và mẫu số : Vì phân số có tử số, mẫu só là số lẻ lớn hơn \(6\) nhỏ hơn \(10\). Vậy tử số, mẫu số đó có thể là \(7\) hoặc \(9\).

- Nếu tử số bé hơn mẫu số thì phân số bé hơn \(1\).

- Nếu tử số lớn hơn mẫu số thì phân số lớn hơn \(1\). 

- Nếu tử số bằng mẫu số thì phân số bằng \(1\).

Lời giải chi tiết:

 Vì phân số có tử số, mẫu só là số lẻ lớn hơn \(6\) nhỏ hơn \(10\). Vậy tử số, mẫu số đó có thể là \(7\) hoặc \(9\).

a) Phân số đó bé hơn \(1\). Vậy phân số đó là \(\displaystyle{7 \over 9}.\)

b) Phân số đó bằng \(1\). Vậy phân số đó là \(\displaystyle{7 \over 7};{9 \over 9}.\)

c) Phân số đó lớn hơn \(1\). Vậy phân số đó là \(\displaystyle{9 \over 7}.\)

Bài 4

Tính:

a) \(\displaystyle{{5 \times 6 \times 7 \times 8} \over {6 \times 7 \times 8 \times 9}}\)

b) \(\displaystyle{{42 \times 32} \over {12 \times 14 \times 16}}\)

Phương pháp giải:

Phân tích tử số và mẫu số thành tích của các thừa số, sau đó lần lượt chia nhẩm tích ở tử số và tích ở mẫu số cho các thừa số chung.

Lời giải chi tiết:

 a) \(\displaystyle {{5 \times 6 \times 7\times 8} \over {6 \times 7 \times 8 \times 9}} = \dfrac{5 \times \not{6}\times \not{7}\times \not{8}} {\not{6}\times \not{7} \times \not{8} \times 9}\) \(=\dfrac{5}{9}\)

b) \(\displaystyle {{42 \times 32 } \over {12 \times 14 \times 16}} = \dfrac{\not{14}\times 3 \times\not{16}\times 2} {12\times \not{14} \times \not{16}}\) \(=\dfrac{6}{12} = \dfrac{1}{2}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved