VBT TOÁN 5 - TẬP 1

Bài 35 : Luyện tập

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 1
Bài 2
Bài 3
Bài 4

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 1
Bài 2
Bài 3
Bài 4

Bài 1

Chuyển các phân số thập phân thành số thập phân (theo mẫu) :

a) \( \displaystyle {{162} \over {10}} = 16{2 \over {10}} = 16,2;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\quad \quad\)\( \displaystyle {{975} \over {10}} = .....= .....\)

b) \( \displaystyle {{7409} \over {100}} = ..... =.....;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\quad \quad \)\( \displaystyle{{806} \over {100}} = ..... = .....\)

Phương pháp giải:

Quan sát ví dụ mẫu và làm tương tự với các câu còn lại.

Lưu ý: Để viết phân số dưới dạng hỗn số ta có thể lấy tử số chia cho mẫu số. Thương tìm được là số nguyên; viết phần nguyên kèm theo một phân số có tử số là số dư, mẫu số là số chia.

Lời giải chi tiết:

a) \( \displaystyle {{162} \over {10}} = 16{2 \over {10}} = 16,2\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\)       \( \displaystyle {{975} \over {10}} = 97{5 \over {10}} = 97,5.\)

b) \( \displaystyle {{7409} \over {100}} = 74{9 \over {100}} = 74,09\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\) \( \displaystyle {{806} \over {100}} = 8{6 \over {100}} = 8,06.\)

Bài 2

Chuyển các phân số thập phân thành số thập phân :

a) \( \displaystyle {{64} \over {10}} = ....;\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{372} \over {10}} = ....;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\)\( \displaystyle{{1954} \over {100}} = ....\)

b) \( \displaystyle {{1942} \over {100}} = ....;\,\,\,\,\,\,\,\,\,\,\,\,{{6135} \over {1000}} = ....;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\)\( \displaystyle{{2001} \over {1000}} = ....\)

Phương pháp giải:

Có thể chuyển phân số thập phân đã cho dưới dạng hỗn số rồi viết thành số thập phân.

Lời giải chi tiết:

a) \( \displaystyle {{64} \over {10}} =6\dfrac{4}{10}= 6,4;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\quad \)\( \displaystyle{{372} \over {10}} =37\dfrac{2}{10}= 37,2;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\) \( \displaystyle{{1954} \over {100}} =19\dfrac{54}{100}= 19,54\)

b) \( \displaystyle {{1942} \over {100}} =19\dfrac{42}{100}= 19,42;\,\,\,\,\,\,\,\,\,\,\,\,\,\)\( \displaystyle{{6135} \over {1000}} =61\dfrac{35}{100}= 6,135;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\) \( \displaystyle{{2001} \over {1000}} =2\dfrac{1}{1000}= 2,001\)

Bài 3

Viết số thích hợp vào chỗ trống (theo mẫu)

Phương pháp giải:

Ta có thể làm như sau: \(\displaystyle 2,1m = 2{1 \over {10}}m = 2m\,\,1dm = 21dm\).

Các câu khác làm tương tự như câu trên.

Lời giải chi tiết:

+) \( \displaystyle 2,1m = 2{1 \over {10}}m = 2m\,\,1dm = 21dm\)

+) \( \displaystyle 9,75m = 9\,{{75} \over {100}}\,m = 9m\;75cm \) \(=975cm\)

+) \( \displaystyle 7,08m = 7\,{{8} \over {100}}\,m = 7m\;8cm \) \(= 708cm\).

+) \( \displaystyle 4,5m = 4\,{5 \over {10}}\,m = 4m\;5dm  =45dm\)

+) \( \displaystyle 4,2m = 4\,{{2} \over {10}}\,m =4\,\dfrac{20}{100}m \) \(= 4m\;20cm =420cm\)

+) \( \displaystyle 1,01m = 1\,{{1} \over {100}}\,m = 1m\;1cm \) \(= 101cm\).

Vậy ta có kết quả như sau :

Bài 4

 Viết tiếp vào chỗ chấm cho thích hợp

 \( \displaystyle {9 \over {10}} = 0,9\,\,\,;\,\,{{90} \over {100}} = 0,90\)

Ta thấy: \(0,9 = 0,90\) vì  ...........................

Phương pháp giải:

Áp dụng tính chất cơ bản của phân số :  nếu nhân cả tử số và mẫu số của một phân số với cùng một số tự nhiên khác 0 thì được một phân số bằng phân số đã cho.

Lời giải chi tiết:

Ta có :  \( \displaystyle {9 \over {10}} = 0,9\,\,\,;\,\,\quad \quad \quad \quad {{90} \over {100}} = 0,90\) 

Ta thấy: \(0,9 = 0,90\) vì \( \displaystyle {9 \over {10}} = {9 \times 10 \over {10 \times 10 }}={{90} \over {100}}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved