Giải bài 9 trang 23 SBT toán 10 - Chân trời sáng tạo

Đề bài

Một người phát cầu qua lưới từu độ cao \({y_0}\) mét, nghiệm một góc \(\alpha \) so với phương ngang với vận tốc đầu \({v_0}\)

Phương trình chuyển động của quả cầu là:

\(y = \frac{{ - g}}{{2v_0^2{{\cos }^2}\alpha }}{x^2} + \tan \left( \alpha  \right)x + {y_0}\) với\(g = 10\) m/s2

Viết phương trình chuyển động của quả cầu nếu \(\alpha  = 45^\circ ,{y_0} = 0,3\) m và \({v_0} = 7,67\) m/s

b) Để cầu qua được lưới bóng cao 1,5 m thì người phát cầu phải đứng cách lưới bao xa?

Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải chi tiết

a) Thay các số đã biết vào phương trình chuyển động ta có :

          \(y = \frac{{ - 10}}{{2.7,{{67}^2}{{\cos }^2}45^\circ }}{x^2} + \left( {\tan 45^\circ } \right)x + 0,3 \simeq  - 0,17{x^2} + x + 0,3\)

b) Để cầu qua được lưới bóng cao 1,5 mét thì \(y > 1,5 \Leftrightarrow  - 0,17{x^2} + x + 0,3 > 1,5 \Leftrightarrow  - 0,17{x^2} + x +  - 1,2 > 0\)

Giải bất phương trình trên ta có tập nghiệm là \(\left( {1,68;4,2} \right)\)

Vậy người phát cầu phải đứng cách lưới khoảng 1,68 m đến 4,2 m

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved