Đề bài
Tính khoảng cách từ điểm M đến đường thẳng \(\Delta \) trong các trường hợp sau:
a) \(M\left( {2;3} \right)\) và \(\Delta :8x - 6y + 7 = 0\)
b) \(M\left( {0;1} \right)\) và \(\Delta :4x + 9y - 20 = 0\)
c) \(M\left( {1;1} \right)\) và \(\Delta :3y - 5 = 0\)
d) \(M\left( {4;9} \right)\) và \(\Delta :x - 25 = 0\)
Phương pháp giải - Xem chi tiết
Khoảng cách từ 1 điểm \(A\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(d:ax + by + c = 0\) là:
\(d\left( {A,d} \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Lời giải chi tiết
a) \(d\left( {M,\Delta } \right) = \frac{{\left| {8.2 - 6.3 + 7} \right|}}{{\sqrt {{8^2} + {{\left( { - 6} \right)}^2}} }} = \frac{1}{2}\)
b) \(d\left( {M,\Delta } \right) = \frac{{\left| {4.0 + 9.1 - 20} \right|}}{{\sqrt {{4^2} + {9^2}} }} = \frac{{11}}{{\sqrt {97} }}\)
c) \(d\left( {M,\Delta } \right) = \frac{{\left| {3.1 - 5} \right|}}{{\sqrt {{0^2} + {3^2}} }} = \frac{2}{3}\)
d) \(d\left( {M,\Delta } \right) = \frac{{\left| {4 - 25} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 21\)
Chuyên đề 3. Đọc, viết và giới thiệu một tập thơ, một tập truyện ngắn gọn một tiểu thuyết
Phần 1. Giới thiệu chương trình môn Sinh học và các cấp độ tổ chức của thế giới sống
Chương IV. Văn minh Đông Nam Á cổ-trung đại
Tây Tiến
Phần 2. Sinh học tế bào
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10