Giải bài 5 trang 66 SBT toán 10 - Chân trời sáng tạo

Đề bài

Xét vị trí tương đối của các cặp đường thẳng \({d_1}\) và \({d_2}\) sau đây:

a) \({d_1}:2x + y + 9 = 0\) và \({d_2}:2x + 3y - 9 = 0\)

b) \({d_1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\end{array} \right.\) và \({d_2}:2x + y + 10 = 0\)

c) \({d_1}:\left\{ \begin{array}{l}x = 1 - t\\y = 8 - 5t\end{array} \right.\) và \({d_2}:5x - y + 3 = 0\)

Lời giải chi tiết

a) Vectơ pháp tuyến của \({d_1}\) và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}}  = \left( {2;1} \right),\overrightarrow {{n_2}}  = \left( {2;3} \right)\)→ Hai đường thẳng cắt nhau

b) Vectơ pháp tuyến của \({d_1}\) và \({d_2}\) lần lượt là: \(\overrightarrow {{n_1}}  = \left( {2;1} \right),\overrightarrow {{n_2}}  = \left( {2;1} \right)\)

Ta thấy \(\overrightarrow {{n_2}}  = \overrightarrow {{n_1}} \) → Hai đường thẳng song song hoặc trùng nhau

Xét \(A\left( {2;1} \right)\) thuộc \({d_1}\), ta thấy A không thuộc \({d_2}\) → Hai đường thẳng này song song với nhau

c) Vectơ pháp tuyến của \({d_1}\) và \({d_2}\) lần lượt là: \(\overrightarrow {{n_1}}  = \left( {5; - 1} \right),\overrightarrow {{n_2}}  = \left( {5; - 1} \right)\)

Ta thấy \(\overrightarrow {{n_2}}  = \overrightarrow {{n_1}} \) → Hai đường thẳng song song hoặc trùng nhau

Xét \(A\left( {1;8} \right)\) thuộc \({d_1}\), ta thấy A cũng thuộc \({d_2}\) → Hai đường thẳng này trùng nhau

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved