Giải bài 5 trang 22 SBT toán 10 - Chân trời sáng tạo

Đề bài

Giải các phương trình sau:

a) \(\sqrt {3{x^2} + 7x - 1}  = \sqrt {6{x^2} + 6x - 11} \)           b) \(\sqrt {{x^2} + 12x + 28}  = \sqrt {2{x^2} + 14x + 24} \)

c) \(\sqrt {2{x^2} - 12x - 14}  = \sqrt {5{x^2} - 26x - 6} \)                     d) \(\sqrt {11{x^2} - 43x + 25}  =  - 3x + 4\)

e) \(\sqrt { - 5{x^2} - x + 35}  = x + 5\)                                       g) \(\sqrt {11{x^2} - 64x + 97}  = 3x - 11\)

Phương pháp giải - Xem chi tiết

Bước 1: Bình phương hai vế

Bước 2: Rút gọn và giải phương trình bậc hai đó

Bước 3: Thay nghiệm vừa tìm được vào phương trình ban đầu và kết luận

Lời giải chi tiết

a) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l}3{x^2} + 7x - 1 = 6{x^2} + 6x - 11\\ \Rightarrow 3{x^2} - x - 10 = 0\end{array}\)

         \( \Rightarrow x =  - \frac{5}{3}\) hoặc \(x = 2\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy chỉ có \(x = 2\) thỏa mãn

Vậy nghiệm của phương trình là \(x = 2\)

b) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l}{x^2} + 12x + 28 = 2{x^2} + 14x + 24\\ \Rightarrow {x^2} + 2x - 4 = 0\end{array}\)

         \( \Rightarrow x =  - 1 - \sqrt 5 \) hoặc \(x =  - 1 + \sqrt 5 \)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy chỉ có \(x =  - 1 + \sqrt 5 \) thỏa mãn

Vậy nghiệm của phương trình là \(x =  - 1 + \sqrt 5 \)

c) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l}2{x^2} - 12x - 14 = 5{x^2} - 26x - 6\\ \Rightarrow 3{x^2} - 14x + 8 = 0\end{array}\)

         \( \Rightarrow x = \frac{2}{3}\) hoặc \(x = 4\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy cả hai nghiệm đều không thỏa mãn

Vậy phương trình đã cho vô nghiệm

d) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l}11{x^2} - 43x + 25 = 9{x^2} - 24x + 16\\ \Rightarrow 2{x^2} - 19x + 9 = 0\end{array}\)

         \( \Rightarrow x = \frac{1}{2}\) hoặc \(x = 9\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy chỉ có \(x = \frac{1}{2}\)  thỏa mãn

Vậy nghiệm của phương trình là \(x = \frac{1}{2}\)

e) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l} - 5{x^2} - x + 35 = {x^2} + 10x + 25\\ \Rightarrow 6{x^2} + 11x - 10 = 0\end{array}\)

         \( \Rightarrow x =  - \frac{5}{2}\) hoặc \(x = \frac{2}{3}\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy cả hai giá trị đều thỏa mãn

Vậy phương trình có hai nghiệm là \(x =  - \frac{5}{2}\) vả \(x = \frac{2}{3}\)

g) Bình phương 2 vế của phương trình đã cho, ta được:

          \(\begin{array}{l}11{x^2} - 64x + 97 = 9{x^2} - 66x + 121\\ \Rightarrow 2{x^2} + 2x - 64 = 0\end{array}\)

         \( \Rightarrow x =  - 4\) hoặc \(x = 3\)

Thay lần lượt các giá trị vừa tìm được vào phương trình ban đầu ta thấy cả hai giá trị đều không thỏa mãn

Vậy phương trình đã cho vô nghiệm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved