Giải bài 2 trang 48 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Tìm các điểm trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) có độ dài hai bán kính qua tiêu nhỏ nhất, lớn nhất.

Lời giải chi tiết

Elip  \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) có nửa tiêu cự bằng \(c = \sqrt {{a^2} - {b^2}} \).

Với mỗi điểm \(M({x_0};{y_0})\) thuộc elip, ta có bán kính qua tiêu của M ứng với tiêu điểm  \({F_1}\) là \(M{F_1} = a + \frac{c}{a}{x_0}\), ứng với tiêu điểm \({F_2}\) là \(M{F_2} = a - \frac{c}{a}{x_0}\)

Mặt khác \(M({x_0};{y_0})\) thuộc elip nên \( - a \le {x_0} \le a\).

\( \Rightarrow \left\{ \begin{array}{l}a - c \le M{F_1} = a + \frac{c}{a}{x_0} \le a + c\\a - c \le M{F_2} = a - \frac{c}{a}{x_0} \le a + c\end{array} \right.\)

Hơn nữa,

\(\begin{array}{l}M{F_1} = a - c \Leftrightarrow {x_0} =  - a,{y_0} = 0\\M{F_1} = a + c \Leftrightarrow {x_0} = a,{y_0} = 0\\M{F_2} = a - c \Leftrightarrow {x_0} = a,{y_0} = 0\\M{F_1} = a + c \Leftrightarrow {x_0} =  - a,{y_0} = 0\end{array}\)

Vậy \(M{F_1}\) nhỏ nhất bằng \(a - c\) khi M trùng \({A_1}( - a;0)\) và lớn nhất bằng \(a + c\) khi M trùng \({A_2}(a;0)\); \(M{F_2}\) nhỏ nhất bằng \(a - c\) khi M trùng \({A_2}(a;0)\) và lớn nhất bằng \(a + c\) khi M trùng \({A_1}( - a;0)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved