Đề bài
Tính khoảng cách giữa hai đường thẳng: \(\Delta :6x + 8y - 11 = 0\) và \(\Delta ':6x + 8y - 1 = 0\)
Phương pháp giải - Xem chi tiết
Khoảng cách giữa hai đường thẳng song song \(d:ax + by + c = 0\) và \(d':ax + by + c' = 0\) là \(d\left( {d,d'} \right) = \frac{{\left| {c - c'} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Lời giải chi tiết
Ta thấy \(\Delta \) và \(\Delta '\) song song với nhau do có cùng VTPT \(\overrightarrow n = (6;8)\)
\( \Rightarrow \) Khoảng cách giữa hai đường thẳng là:
\(d\left( {\Delta ,\Delta '} \right) = \frac{{\left| { - 11 - \left( { - 1} \right)} \right|}}{{\sqrt {{6^2} + {8^2}} }} = 1\)
Phần 2. Sinh học tế bào
Chương 1. Sử dụng bản đồ
Soạn Văn 10 Chân trời sáng tạo tập 2 - siêu ngắn
Chương 5: Thủy quyển
Chủ đề 1: Máy tính và xã hội tri thức
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10