Đề bài
Tính biệt thức và nghiệm (nếu có) của tam thức bậc hai sau. Xác định dấu của chúng tại \(x = - 2\)
a) \(f\left( x \right) = - 2{x^2} + 3x - 4\)
b) \(g\left( x \right) = 2{x^2} + 8x + 8\)
c) \(h\left( x \right) = 3{x^2} + 7x - 10\)
Lời giải chi tiết
a) Biệt thức của f(x) là \(\Delta = {3^2} - 4.\left( { - 2} \right).\left( { - 4} \right) = - 23\)
Ta có \(\Delta < 0\) nên tam thức bậc hai đã cho vô nghiệm
\(f( - 2) = - 2.{( - 2)^2} + 3.( - 2) - 4 = - 18 < 0\) nên \(f(x)\) âm tại \(x = - 2\)
b) Biệt thức của g(x) là \(\Delta = {8^2} - 4.2.8 = 0\)
Ta có \(\Delta = 0\) nên tam thức bậc hai đã cho có nghiệm kép \({x_1} = {x_2} = - 2\)
Vậy nghiệm của g(x) là \( - 2\)
Do đó \(g( - 2) = 0\) nên \(g(x)\) không âm, không dương tại \(x = - 2\)
c) Biệt thức của h(x) là \(\Delta = {7^2} - 4.3.\left( { - 10} \right) = 169\)
Ta có \(\Delta > 0\) nên tam thức bậc hai đã cho có hai nghiệm là \(x = - \frac{{10}}{3}\) hoặc \(x = 1\)
Vậy nghiệm của h(x) là \( - \frac{{10}}{3}\) và 1
\(h( - 2) = 3.{( - 2)^2} + 7.( - 2) - 10 = - 12 < 0\) nên \(h(x)\) âm tại \(x = - 2\)
Chủ đề 3: Ngân sách nhà nước và thuế
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Ngữ văn lớp 10
Mở đầu
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 10
Chương III. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10