Đề bài
Cho hypebol (H) \(\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{25}} = 1\)
a) Tìm tâm sai và bán kính qua tiêu của điểm \(M\left( {13;\frac{{25}}{{12}}} \right)\) trên (H).
b) Tìm tọa độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng.
c) Tìm điểm \(N(x;y) \in (H)\) sao cho \(N{F_1} = 2N{F_2}\) với \({F_1},{F_2}\) là hai tiêu điểm của (H).
Phương pháp giải - Xem chi tiết
Cho hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)
a) + Tâm sai của hypebol: \(e = \frac{c}{a}\)
+ Bán kính qua tiêu của M (x; y): \(M{F_1} = \left| {a + ex} \right|,\;M{F_2} = \left| {a - ex} \right|.\)
b) + Ứng với tiêu điểm \({F_1}( - c;0)\), có đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\)
+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x - \frac{a}{e} = 0\)
Lời giải chi tiết
a) Ta có \(a = 12,b = 5 \Rightarrow c = \sqrt {{a^2} + {b^2}} = 13;e = \frac{c}{a} = \frac{{13}}{{12}}\)
Bán kính qua tiêu của \(M\left( {13;\frac{{25}}{{12}}} \right)\) là \(M{F_1} = \left| {a + ex} \right| = \left| {12 + \frac{{13}}{{12}}.13} \right| = \frac{{313}}{{12}},\;M{F_2} = \left| {a - ex} \right| = \left| {12 - \frac{{13}}{{12}}.13} \right| = \frac{{25}}{{12}}.\)
b) Ứng với tiêu điểm \({F_1}( - 13;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{144}}{{13}} = 0\)
Ứng với tiêu điểm \({F_2}(13;0)\), có đường chuẩn \({\Delta _2}:x - \frac{{144}}{{13}} = 0\)
c) Để \(N{F_1} = 2N{F_2} \Leftrightarrow \left| {a + e{x_N}} \right| = 2\left| {a - e{x_N}} \right|\)
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}a + e{x_N} = 2\left( {a - e{x_N}} \right) \Leftrightarrow {x_N} = \frac{a}{{3e}} = \frac{{48}}{{13}} < a\;(L)\\a + e{x_N} = - 2\left( {a - e{x_N}} \right) \Leftrightarrow {x_N} = \frac{{3a}}{e} = \frac{{432}}{{13}}\end{array} \right.\\ \Rightarrow {y_N} = \pm \frac{{35\sqrt {23} }}{{13}}\end{array}\)
Vậy \(N\left( {\frac{{432}}{{13}};\frac{{35\sqrt {23} }}{{13}}} \right)\) hoặc \(N\left( {\frac{{432}}{{13}}; - \frac{{35\sqrt {23} }}{{13}}} \right)\)
Chương 2. Mô tả chuyển động
Unit 3: Shopping
Bài 9. Đội ngũ từng người không có súng
Môn bóng rổ
Chủ đề 4. Sản xuất kinh doanh và các mô hình sản xuất kinh doanh
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10