Đề bài
Cho elip (E): \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{36}} = 1\)
a) Tìm tâm sai, chiều dài, chiều rộng hình chữ nhật cơ sở của (E) và vẽ (E)
b) Tìm độ dài hai bán kính qua tiêu của điểm \(M(0;6)\) trên (E).
c) Tìm tọa độ hai tiêu điểm và viết phương trình hai đường chuẩn của (E).
Phương pháp giải - Xem chi tiết
Cho elip \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), \(c = \sqrt {{a^2} - {b^2}} \)
a)
+ Tâm sai của elip: \(e = \frac{c}{a}\)
+ Chiều dài hình chữ nhật cơ sở: 2a.
+ Chiều rộng hình chữ nhật cơ sở: 2b.
b) Bán kính qua tiêu của \(M(x;y)\): \(M{F_1} = a + ex,\;M{F_2} = a - ex.\)
c)
+ Ứng với tiêu điểm \({F_1}( - c;0)\), có đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\)
+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x - \frac{a}{e} = 0\)
Lời giải chi tiết
Elip \((E)\) có \(a = 8,b = 6\), suy ra \(c = \sqrt {{a^2} - {b^2}} = 2\sqrt 7 .\)
a)
+ Tâm sai của elip: \(e = \frac{c}{a} = \frac{{\sqrt 7 }}{4}\)
+ Chiều dài hình chữ nhật cơ sở: \(2a = 16\)
+ Chiều rộng hình chữ nhật cơ sở: \(2b = 12\)
b) Bán kính qua tiêu của \(M(0;6)\): \(M{F_1} = 8 + \frac{{\sqrt 7 }}{4}.0 = 8,\;M{F_2} = 8 - \frac{{\sqrt 7 }}{4}.0 = 8.\)
c)
+ Ứng với tiêu điểm \({F_1}( - 2\sqrt 7 ;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{32\sqrt 7 }}{7} = 0\)
+ Ứng với tiêu điểm \({F_2}(2\sqrt 7 ;0)\), có đường chuẩn \({\Delta _2}:x - \frac{{32\sqrt 7 }}{7} = 0\)
Chủ đề 4: Sản xuất kinh doanh và các mô hình sản xuất kinh doanh
Chủ đề 4. Một số cuộc cách mạng công nghiệp trong lịch sử thế giới
Grammar Builder
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử
Tổng hợp danh pháp các nguyên tố hóa học
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10