Bài tập 29 trang 92 Tài liệu dạy – học Toán 8 tập 2

Đề bài

Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh rằng : \(\Delta BDA \sim \Delta BFC\) và BD.BC = BF.BA

b) Chứng minh rằng \(\widehat {BDF} = \widehat {BAC}\) .

c) CHứng minh rằng BH.BE = BD.BC và \(BH.BE{\rm{ }} + {\rm{ }}CH.CF{\rm{ }} = B{C^2}\) .

d) Đường thẳng qua A song song với BC cắt tia DF tại M. Gọi I là giao điểm của CM và AD. Chứng minh rằng IE // BC.

Lời giải chi tiết

 

a) Xét ∆BDA và ∆BFC có:

\(\widehat {DBA}\) (chung), \(\widehat {BDA} = \widehat {BFC}( = 90^\circ )\)

Do đó \(\Delta BDA \sim \Delta BFC(g.g)\)

\( \Rightarrow {{BD} \over {BF}} = {{BA} \over {BC}} \)

\(\Rightarrow BD.BC = BF.BA\)

b) Xét ∆BDF và ∆BAC có: \(\widehat {DBF}(chung),\)

\({{BD} \over {BA}} = {{BF} \over {BC}}\) (vì BD.BC = BF.BA)

Do đó \(\Delta BDF \sim \Delta BAC(c.g.c) \)

\(\Rightarrow \widehat {BDF} = \widehat {BAC}\)

c) Xét ∆BDH và ∆BEC có: \(\widehat {DBH}(chung),\widehat {BDH} = \widehat {BEC}( = 90^\circ )\)

Do đó \(\Delta BDH \sim \Delta BEC(g.g) \)

\(\Rightarrow {{BD} \over {BE}} = {{BH} \over {BC}} \)

\(\Rightarrow BH.BE = BD.BC\)

Tương tự có \(\Delta CDH \sim \Delta CFB \)

\(\Rightarrow {{CH} \over {BC}} = {{CD} \over {CF}}\)

\(\Rightarrow CH.CF = CD.BC\)

Do đó \(BH.BE + CH.CF \)\(\,= BD.BC + CD.BC\)\(\, = BC.(BD + CD) = BC.BC= {BC^2}\)

d) Gọi N là giao điểm của DE và AM, ta có \(\widehat {BDF} = \widehat {BAC}(\Delta BDF \sim \Delta BAC)\)

Tương tự \(\widehat {CDE} = \widehat {CAB}\)

Do đó \(\widehat {BDF} = \widehat {CDE}.\)

Mà \(\widehat {BDF} + \widehat {ADM} = \widehat {CDE} + \widehat {ADN}( = 90^\circ ) \)

\(\Rightarrow \widehat {ADM} = \widehat {ADN}\)

Mặt MN // BC, \(AD \bot BC \Rightarrow MN \bot AD\)

∆DMN có DA là đường cao, đường phân giác

\( \Rightarrow \Delta DMN\) cân tại D => AM = AN

Xét ∆IDC có: AM // CD \( \Rightarrow {{AM} \over {CD}} = {{AI} \over {DI}}\) (hệ quả của định lí Thales)

Xét ∆EDC có: CD // AN \( \Rightarrow {{AN} \over {CD}} = {{AE} \over {CE}}\) (hệ quả của định lí Thales) \( \Rightarrow {{AI} \over {DI}} = {{AE} \over {CE}}\)

Xét ∆AND có: \({{AI} \over {DI}} = {{AE} \over {CE}} \Rightarrow IE//AN\) (định lí Thales đảo)

Ta có IE // AN và AN // BC => IE // BC

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved