Bài tập 28 trang 92 Tài liệu dạy – học Toán 8 tập 2

Đề bài

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M và N là trung điểm của AH và BH.

a) Chứng minh rằng tam giác HMN và tam giác HAB đồng dạng

b) Chứng minh rằng HM.HA = HN.HC.

c) Chứng minh rằng tam giác AHN đồng dạng với tam giác AHM.

d) Gọi K là giao điểm của MN với AC, I là giao điểm CN với AN. Chứng minh KM là tia phân giác của góc IKH.

Lời giải chi tiết

 

a) M, N lần lượt là trung điểm của AH và BH (gt)

=> MN là đường trung bình của ∆ABH => MN // AB

Xét ∆HMN và ∆HAB có: \(\widehat {MHN}\) (chung)

Và \(\widehat {NMH} = \widehat {BAH}\) (hai góc đồng vị và MN // AB)

Do đó \(\Delta HMN \sim \Delta HAB(g.g)\)

b) Ta có: \(\widehat {ABC} = \widehat {HAC}\) (cùng phụ với góc C)

Và \(\widehat {ABC} = \widehat {MNH}\) (hai góc đồng vị và MN // AB) \( \Rightarrow \widehat {HAC} = \widehat {MNH}\)

Xét ∆HAC và ∆HNM có: \(\widehat {HAC} = \widehat {MNH}\) và \(\widehat {AHC} = \widehat {MHN}( = 90^\circ )\)

Do đó \(\Delta HAC \sim \Delta HNM(g.g) \)

\(\Rightarrow {{HA} \over {HN}} = {{HC} \over {HM}}\)

\(\Rightarrow HM.HA = HN.HC\)

c) Xét ∆ANH và ∆MHC có: \({{AH} \over {CH}} = {{HN} \over {HM}}\) (vì HM.HA=HN.HC)

Và \(\widehat {AHN} = \widehat {MHC}( = 90^\circ )\)

\(\Rightarrow \Delta ANH \sim \Delta CMH(c.g.c)\)

d) Ta có MN // AB, \(AB \bot AC \Rightarrow MN \bot AC\)

∆ANC có AH, NK là hai đường cao cắt nhau tại M

=> M là trực tâm của tam giác ANC

=> CM là đường cao của tam giác ANC \( \Rightarrow CM \bot AN\)

Xét ∆AKN và ∆AIC có: \(\widehat {KAN}\) (chung) và \(\widehat {AKN} = \widehat {AIC}( = 90^\circ )\)

Do đó \(\Delta AKN \sim \Delta AIC(g.g) \)

\(\Rightarrow {{AK} \over {AI}} = {{AN} \over {AC}}\)

\(\Rightarrow {{AK} \over {AN}} = {{AI} \over {AC}}\)

Xét ∆AKI và ∆ABC có: \({{AK} \over {AN}} = {{AI} \over {AC}},\widehat {KAI}(chung)\)

Do đó \(\Delta AKI \sim \Delta ANC(c.g.c) \)

\(\Rightarrow \widehat {AKI} = \widehat {ANC}\)

Tương tự \(\Delta CKH \sim \Delta CNA \Rightarrow \widehat {CKH} = \widehat {ANC}\)

Ta có \(\widehat {AKI} = \widehat {CKH}( = \widehat {ANC})\) mà \(\widehat {AKI} + \widehat {MKI} = \widehat {CKM} + \widehat {MKH}( = 90^\circ )\)

Do đó \(\widehat {MKI} = \widehat {MKH} \Rightarrow KM\) là tia phân giác của góc IKH

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved