Bài tập 26 trang 92 Tài liệu dạy – học Toán 8 tập 2

Đề bài

Cho tam giác ABC vuông tại A (AB < AC). Kẻ đường cao AH. Tia phân giác của góc B cắt AC ở E, cắt AH ở F.

a) Chứng minh rằng AB.HF = AE.HB.

b) Chứng minh rằng AE = AF.

c) Chứng minh rằng AE2 = EC.FH.

d) Cho biết AB = 9 cm, AC = 12 cm. Tính diện tích tam giác BHF.

Lời giải chi tiết

 

a) Xết ∆ABE và ∆BHF có:

\(\widehat {BAE} = \widehat {BHF}( = 90^\circ )\)

Và \(\widehat {ABE} = \widehat {FBH}\) (BE là tia phân giác của góc B)

Do đó \(\Delta ABE \sim \Delta HBF(g.g)\)

\( \Rightarrow {{AB} \over {HB}} = {{AE} \over {HF}} \Rightarrow AB.HF = AE.HB\)

b) Ta có \(\widehat {AEF} = \widehat {HFB}\) (vì \(\Delta ABE \sim \Delta HBF)\)

Và \(\widehat {HFB} = \widehat {AFE}\) (đối đỉnh)

\( \Rightarrow \widehat {AEF} = \widehat {AFE} \Rightarrow \Delta AEF\) cân tại A \( \Rightarrow AE = AF\)

c) Xét ∆ABH và ∆ABC có: góc B (chung) và \(\widehat {AHB} = \widehat {BAC}( = 90^\circ )\)

Do đó \(\Delta ABH \sim \Delta CBA(g.g) \)

\(\Rightarrow {{AB} \over {BC}} = {{BH} \over {AB}} \)

\(\Rightarrow {{BC} \over {AB}} = {{AB} \over {BH}}(1)\)

∆ABC có BE là đường phân giác (gt) nên \({{EC} \over {AE}} = {{BC} \over {AB}}(2)\)

∆ABH có BF là đường phân giác (gt) nên \({{AF} \over {FH}} = {{AB} \over {BH}}(3)\)

Từ (1), (2) và (3) suy ra: \({{EC} \over {AE}} = {{AF} \over {FH}} \Rightarrow AE.AF = EC.FH\)

Mà AF = AE (câu b) \( \Rightarrow AE.AE = EC.FH \Rightarrow A{E^2} = EC.FH\) 
d) ∆ABC vuông tại A có \(B{C^2} = A{B^2} + A{C^2}\) (định lí Py-ta-go)

\( \Rightarrow B{C^2} = {9^2} + {12^2} = 225 \Rightarrow BC = 15(cm)\)

Ta có \(AH.BC = AB.AC( = 2{S_{ABC}}) \)

\(\Rightarrow AH = {{AB.AC} \over {BC}} = {{9.12} \over {15}} = 7,2(cm)\)

∆HAB vuông tại H \( \Rightarrow A{H^2} + B{H^2} = A{B^2}\) (định lý Py-ta-go)

Do đó \(B{H^2} = A{B^2} - A{H^2} = {9^2} - 7,{2^2} = 5,{4^2} \)

\(\Rightarrow BH = 5,4(cm)\)

∆ABH có BF là đường phân giác

\( \Rightarrow {{FH} \over {AF}} = {{BH} \over {AB}}\)

\(\Rightarrow {{FH} \over {BH}} = {{AF} \over {AB}} = {{FH + AF} \over {BH + AB}} = {{AH} \over {BH + AB}}\)

Nên \({{FH} \over {5,4}} = {{7,2} \over {5,4 + 9}} \)

\(\Rightarrow FH = 2,7(cm)\)

Do vậy \({S_{BHF}} = {1 \over 2}FH.BH = {1 \over 2}.2,7.5,4 = 7,29(c{m^2})\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved