Bài tập 11 trang 69 Tài liệu dạy – học Toán 8 tập 2

Đề bài

Tam giác ABC có AB = 15, AC = 20, BC = 25. Đường phân giác của góc BAC cắt BC tại D. Qua D vẽ DE // AB (D thuộc AC).

a) Tính độ dài các đoạn thẳng DB, DC và DE.

b) Chứng minh tam giác ABC là tam giác vuông. Tính diện tích tam giác ABC.

c) Tính diện tích các tam giác ADB, ADE và DCE.

Lời giải chi tiết

 

a) ∆ABC có AD là đường phân giác (gt) nên \({{DB} \over {DC}} = {{AB} \over {AC}}\)

\( \Rightarrow {{DB} \over {AB}} = {{DC} \over {AC}} = {{DB + DC} \over {AB + AC}} = {{BC} \over {AB + AC}}\)

Do đó \({{DB} \over {15}} = {{DC} \over {20}} = {{25} \over {15 + 20}} = {5 \over 7}\)

\(\Rightarrow DB = {5 \over 7}.15 = {{75} \over 7},\)

\(DC = {5 \over 7}.20 = {{100} \over 7}\)

∆ABC có DE // AB (gt)

\( \Rightarrow {{DE} \over {AB}} = {{DC} \over {BC}} = {{CE} \over {AC}}\) (hệ quả của định lí Thales)

\( \Rightarrow {{DE} \over {15}} = {{{{100} \over 7}} \over {25}} = {{CE} \over {AC}}\)

\(\Rightarrow {{DE} \over {15}} = {4 \over 7} = {{CE} \over {AC}}.\)

Từ đó ta có: \({{DE} \over {15}} = {4 \over 7}\)

\( \Rightarrow DE = {{15.4} \over 7} = {{60} \over 7}\)

b) Ta có \(B{C^2} = {25^2} = 625\) và \(A{B^2} + A{C^2} = {15^2} + {20^2} = 625\)

Do đó \(B{C^2} = A{B^2} + A{C^2} \Rightarrow \Delta ABC\) vuông tại A (định lí Py-ta-go đảo)

\({S_{ABC}} = {1 \over 2}AB.AC = {1 \over 2}.15.20 = 150(dvdt)\)

c) Kẻ \(AH \bot BC\) tại H

\({S_{ABC}} = {1 \over 2}AH.BC\) và \({S_{ABC}} = 150\)

Suy ra \(150 = {1 \over 2}AH.BC \Rightarrow 150 = {1 \over 2}.AH.25 \)

\(\Rightarrow AH = {{150.2} \over {25}} = 12(cm)\)

\({S_{ADB}} = {1 \over 2}AH.DB = {1 \over 2}.12.{{75} \over 7} = {{450} \over 7}(dvdt)\)

Do đó \({S_{ADC}} = {S_{ABC}} - {S_{ADB}} = 150 - {{450} \over 7} = {{600} \over 7}(dvdt)\)

∆ABC có DE // AB (gt) \( \Rightarrow {{AE} \over {CE}} = {{DB} \over {DC}}\) nên \(\dfrac{{AE}}{{CE}} = \dfrac{{\frac{{75}}{5}}}{{\dfrac{{100}}{7}}} = \dfrac{3}{4}\)

Mà \({{{S_{ADE}}} \over {{S_{DCE}}}} = {{AE} \over {CE}} = {3 \over 4} \Rightarrow {{{S_{ADE}}} \over 3} = {{{S_{DCE}}} \over 4}\)

Do đó \({{{S_{ADE}}} \over 3} = {{{S_{DCE}}} \over 4} = {{{S_{ADE}} + {S_{DCE}}} \over {3 + 4}} = {{{S_{ADC}}} \over 7} = {{600} \over {49}}\)

\( \Rightarrow {S_{ADE}} = {{600} \over {49}}.3 = {{1800} \over {49}}(dvdt)\) và \({S_{DCE}} = {{600} \over {49}}.4 = {{2400} \over {49}}(dvdt)\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved