Số hữu tỉ là số viết được dưới dạng phân số \(\dfrac{a}{b}(a,b \in \mathbb{Z};b \ne 0)\).
Tập hợp các số hữu tỉ được kí hiệu là \(\mathbb{Q}\).
Ví dụ: \( - 7,21;\dfrac{{ - 7}}{{ - 9}};\dfrac{0}{{ - 2}};2\dfrac{3}{8};...\) là các số hữu tỉ.
Chú ý :
+ Mỗi số hữu tỉ đều có một số đối. Số đối của số hữu tỉ \(\dfrac{a}{b}\) là số hữu tỉ -\(\dfrac{a}{b}\).
+ Tổng của 2 số đối nhau luôn bằng 0.
Ví dụ:
Số đối của \(\dfrac{2}{5}\) là \(\dfrac{{ - 2}}{5}\).
Số đối của 0 là 0.
Số đối của \( - 1\dfrac{3}{7}\) là \(1\dfrac{3}{7}\).
+ Các số thập phân đã biết đều là các số hữu tỉ. Các số nguyên, hỗn số cũng là các số hữu tỉ.
Chương 2. Số thực
CHƯƠNG III. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
Chủ đề 1. Trồng trọt và lâm nghiệp
Bài 4. Qùa tặng của thiên nhiên
Bài 5. Từng bước hoàn thiện bản thân
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7