Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Câu 1
Câu 1
Thế nào là đường tròn ngoại tiếp một tam giác? Nêu cách xác định tâm của đường tròn ngoại tiếp tam giác.
Lời giải chi tiết:
- Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh của tam giác.
- Tâm đường tròn ngoại tiếp tam giác là giao điểm của các đường trung trực của các cạnh tam giác.
Câu 2
Câu 2
Thế nào là đường tròn nội tiếp một tam giác? Nêu cách xác định tâm của đường tròn nội tiếp tam giác.
Lời giải chi tiết:
- Đường tròn nội tiếp tam giác là đường tròn tiếp xúc với ba cạnh của tam giác.
- Tâm đường tròn nội tiếp tam giác là giao điểm của các tia phân giác của các góc trong của tam giác.
Câu 3
Câu 3
Chỉ rõ tâm đối xứng của đường tròn, trục đối xứng của đường tròn.
Lời giải chi tiết:
- Tâm của đường tròn là tâm đối xứng của đường tròn đó.
- Mọi đường kính của đường tròn đều là trục đối xứng của đường tròn.
Câu 4
Câu 4
Chứng minh định lí: Trong các dây của một đường tròn, dây lớn nhất là đường kính.
Lời giải chi tiết:
Giả sử ta có đường tròn đường kính \(AB = 2R\) và một dây \(CD. \) Ta chứng minh: \(CD \le 2R\)
+) Nếu \(CD\) là đường kính thì \(CD=2R\)
+) Nếu \(CD\) không là đường kính.
Trong ΔCOD, theo bất đẳng thức tam giác ta có:
\(CD < OC + OD\) mà \(OC=OD=R\)
\(\Rightarrow CD < R+R\) \(\Rightarrow CD < 2R\)
Vậy \(CD ≤ 2R\)
Câu 5
Câu 5
Phát biểu các định lí về quan hệ vuông góc giữa đường kính và dây.
Lời giải chi tiết:
Định lí: Nếu một đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. Ngược lại, một đường kính đi qua trung điểm của một dây (không đi qua tâm) thì vuông góc với dây ấy.
Câu 6
Câu 6
Phát biểu các định lí về liên hệ giữa dây và khoảng cách từ tâm đến dây.
Lời giải chi tiết:
Trong một đường tròn:
- Hai dây bằng nhau thì cách đều tâm và ngược lại, hai dây cách đều tâm thì bằng nhau.
- Dây lớn hơn thì gần tâm hơn và ngược lại, dây gần tâm hơn thì lớn hơn.
Câu 7
Câu 7
Nêu các vị trí tương đối của đường thẳng và đường tròn. Ứng với mỗi vị trí đó, viết hệ thức giữa d (khoảng cách từ tâm đến đường thẳng) và R (bán kính của đường tròn).
Lời giải chi tiết:
Vị trí tương đối của đường thẳng và đường tròn | Số điểm chung | Hệ thức giữa d và R |
---|---|---|
Đường thẳng và đường tròn cắt nhau | 2 | d < R |
Đường thẳng và đường tròn tiếp xúc nhau | 1 | d = R |
Đường thẳng và đường tròn không giao nhau | 0 | d > R |
Câu 8
Câu 8
Phát biểu định nghĩa tiếp tuyến của đường tròn. Phát biểu tính chất của tiếp tuyến và dấu hiệu nhận biết tiếp tuyến. Phát biểu các tính chất của hai tiếp tuyến cắt nhau.
Lời giải chi tiết:
Định nghĩa:
Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua tiếp điểm ấy thì đường thẳng ấy là một tiếp tuyến của đường tròn.
Tính chất và dấu hiệu nhận biết tiếp tuyến:
- Tiếp tuyến với đường tròn là đường thẳng chỉ có một điểm chung với đường tròn.
- Tiếp tuyến với đường tròn thì vuông góc với bán kính đi qua tiếp điểm.
Tính chất của hai tiếp tuyến cắt nhau.
Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì:
a) Điểm đó cách đều hai tiếp điểm.
b) Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.
c) Tia kẻ từ tâm qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua tiếp điểm.
Câu 9
Câu 9
Nêu các vị trí tương đồi của hai đường tròn. Ứng với mỗi vị trí đó, viết hệ thức giữa đoạn nối tâm d với các bán kính R, r.
Lời giải chi tiết:
Câu 10
Câu 10
Tiếp điểm của hai đường tròn tiếp xúc nhau có vị trí như thế nào đối với đường nối tâm? Các giao điểm của hai đường tròn cắt nhau có vị trí như thế nào đối với đường nối tâm?
Lời giải chi tiết:
- Tiếp điểm của hai đường tròn tiếp xúc với nhau thì nằm trên đường nối tâm.
- Các giao điểm của hai đường tròn cắt nhau thì đối xứng với nhau qua đường nối tâm.
Unit 10: Space travel
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 9
Đề thi vào 10 môn Văn Hậu Giang
Bài 24. Vùng Bắc Trung Bộ (tiếp theo)
Bài 4. Lao động và việc làm. Chất lượng cuộc sống