Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Giải phương trình \({x^2} - 4x = - \dfrac{1}{2}\).
Phương pháp giải - Xem chi tiết
Cộng thêm mỗi vế của phương trình với \(4\) để đưa vế trái về hằng đẳng thức \({a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}\)
Từ đó đưa phương trình về dạng
\({\left( {f\left( x \right)} \right)^2} = a\left( {a \ge 0} \right) \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = \sqrt a \\f\left( x \right) = - \sqrt a \end{array} \right.\)
Lời giải chi tiết
Cộng hai vế của phương trình đã cho với \(4\) ta được \({x^2} - 4x + 4 = - \dfrac{1}{2} + 4\)
\( \Leftrightarrow {\left( {x - 2} \right)^2} = \dfrac{7}{2} \Leftrightarrow \left[ \begin{array}{l}x - 2 = \sqrt {\dfrac{7}{2}} \\x - 2 = - \sqrt {\dfrac{7}{2}} \end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}x = 2 + \dfrac{{\sqrt {14} }}{2}\\x = 2 - \dfrac{{\sqrt {14} }}{2}\end{array} \right.\)
Vậy phương trình có hai nghiệm \(x = 2 + \dfrac{{\sqrt {14} }}{2};x = 2 - \dfrac{{\sqrt {14} }}{2}\)
Đề thi vào 10 môn Văn Hải Phòng
CHƯƠNG 3. PHI KIM. SƠ LƯỢC VỀ BẢNG TUẦN HOÀN CÁC NGUYÊN TỐ HÓA HỌC
Unit 9: English in the world
Đề thi vào 10 môn Toán Thái Nguyên
PHẦN II: ĐIỆN TỪ HỌC