Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA và AD.
Lời giải phần a
1. Nội dung câu hỏi
Xác định giao điểm của mặt phẳng (CMN) với các đường thẳng AB, SB.
2. Phương pháp giải
Để xác định giao điểm của mặt phẳng với các đường thẳng, ta tìm điểm chung giữa mặt phẳng và các đường thẳng đó.
3. Lời giải chi tiết
+) Trong mặt phẳng (ABCD): Gọi giao điểm của AB với NC là E.
Mà NC ⊂ (CMN)
Suy ra: (CMN) ∩ AB = {E}.
+) Trong mặt phẳng (SAB): Kéo dài EM cắt AB tại F.
Mà EM ⊂ (CMN)
Suy ra (SAB) ∩ EM = {F}.
Lời giải phần b
1. Nội dung câu hỏi
Xác định giao tuyến của mặt phẳng (CMN) với mỗi mặt phẳng (SAB) và (SBC).
2. Phương pháp giải
Để xác định giao tuyến của hai mặt phẳng, ta tìm điểm chung giữa hai mặt phẳng. Đoạn thẳng nối hai điểm chung đó là giao tuyến giữa hai mặt phẳng.
3. Lời giải chi tiết
+) Ta có: M ∈ SA mà SA ⊂ (SAB) nên M ∈ (SAB);
M ∈ CM mà CM ⊂ (CMN) nên M ∈ (CMN).
Do đó M là giao điểm của hai mặt phẳng (SAB) và (CMN).
Ta lại có: AB ∩ CN = {E};
AB ⊂ (SAB);
CN ⊂ (CMN).
Do đó E là giao điểm của hai mặt phẳng (SAB) và (CMN).
Vì vậy (SAB) ∩ (CMN) = EM.
+) Ta có: C ∈ SC mà SC ⊂ (SBC);
C ∈ CM mà CM ⊂ (CMN).
Do đó C là giao điểm của hai mặt phẳng (SBC) và (CMN).
Ta lại có: SB ∩ EM = {F};
SB ⊂ (SBC);
EM ⊂ (CMN).
Do đó F là giao điểm của hai mặt phẳng (SBC) và (CMN).
Vì vậy (SBC) ∩ (CMN) = CF.
Chủ đề 2. Công nghệ giống vật nuôi
Bài 19: Carboxylic acid
Câu hỏi tự luyện Sinh 11
Chuyên đề 3. Một số vấn đề về pháp luật dân sự
Bài 2: Sự điện li trong dung dịch nước. Thuyết Bronsted - Lowry về acid - base
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11