SGK Toán 8 - Chân trời sáng tạo tập 1

Trả lời câu hỏi 3 - Mục Vận dụng trang 70

1. Nội dung câu hỏi

Một khung cửa sổ hình thang cân có chiều cao 3 m, hai đáy là 3 m và 1 m (Hình 9). Tìm độ dài hai cạnh bên và hai đường chéo.

 

2. Phương pháp giải

Kẻ đường cao BK.

Sử dụng tính chất của hình thang cân.

 

3. Lời giải chi tiết

Xét hình thang cân ABCD (AB // DC) có D^=C^; AD = BC và AC = BD (tính chất hình thang cân).

Kẻ BK ⊥ DC.

Ta có AB // DC và BK ⊥ DC

Suy ra BK ⊥ AB nên ABK^=90°.

Xét ∆AHK và ∆ABK có:

KHA^=ABK^=90°

AK là cạnh chung

AKH^=KAB^ (hai góc so le trong của DC // AB).

Do đó ∆AHK = ∆ABK (cạnh huyền – góc nhọn)

Suy ra HK = BK = 1 m (hai cạnh tương ứng).

Xét ∆AHD và ∆BKC có:

AHD^=BKC^=90°

AD = BC (chứng minh trên)

D^=C^ (chứng minh trên).

Do đó ∆AHD = ∆BKC (cạnh huyền – góc nhọn).

Suy ra DH = CK (hai cạnh tương ứng).

Mà DH + HK + CK = DC

Hay 2DH = DC – HK

Khi đó DH=CK=DC-HK2=3-12=1( m) và HC = 2 m.

Áp dụng định lí Pythagore cho ∆AHD vuông tại H, ta có:

AD2=AH2+DH2=32+12=9+1=10.

Do đó AD=10(m).

Áp dụng định lí Pythagore cho ∆AHC vuông tại H, ta có:

AC2=AH2+HC2=32+22=9+4=13.

Do đó AC=13(m).

Vậy AD=BC=10m,AC=BD=13m.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved