CHƯƠNG I. PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC

Thử tài bạn trang 43(2) Tài liệu dạy – học Toán 8 tập 1

Đề bài

Tìm a để đa thức \(({x^2} + 2x + a)\) chia hết cho đa thức \((x - 1)\) .

Lời giải chi tiết

Để chia hết thì đa thức dư phải bằng 0 với mọi giá trị x.

Do đó \(a + 3 = 0 \Leftrightarrow a =  - 3\). Vậy \(a =  - 3\) thì \({x^2} + 2x + a\) chia hết cho \(x - 1\)

Cách 2:

Gọi thương khi chia \({x^2} + 2x + a\) cho \(x - 1\) là \(Q\left( x \right)\), ta có: \({x^2} + 2x + a = \left( {x - 1} \right)Q\left( x \right)\)

Vì đẳng thức trên đúng với mọi x nên cho \(x = 1\)

Ta có: \({1^2} + 2.1 + a = 0 \Rightarrow 3 + a = 0 \Rightarrow a =  - 3\)

Vậy với \(a =  - 3\) thì \({x^2} + 2x + a\) chia hết cho \(x - 1\).

Cách 3:

Đa thức bị chia có bậc hai, đa thức chia có bậc một nên thương là một nhị thức bậc nhất, có hạng tử bậc nhất là \({x^2}:x = x\).

Gọi thương là \(x + b\), ta có:

\(\eqalign{  & {x^2} + 2x + a = \left( {x - 1} \right)\left( {x + b} \right)  \cr  & {x^2} + 2x + a = {x^2} + bx - x - b  \cr  & {x^2} + 2x + a = {x^2} + \left( {b - 1} \right)x - b \cr} \)

Do đó \(2 = b - 1\) và \(a =  - b \Rightarrow b = 3\) và \(a =  - b\)

Nên \(a =  - 3\).

Vậy với \(a =  - 3\) thì \({x^2} + 2x + a\) chia hết cho \(x - 1\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved