Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
1. Định nghĩa đường tròn
Đường tròn tâm O bán kính R, kí hiệu (O;R), là hình gồm các điểm cách O một khoảng bằng R.
2. Định lí về sự xác định một đường tròn
Qua ba điểm không thẳng hàng, ta vẽ được một và chỉ một đường tròn.
Tâm O của đường tròn đi qua ba điểm A, B, C là giao điểm của ba đường trung trực của tam giác ABC.
3. Tính chất đối xứng của đường tròn
a) Tâm đối xứng
Đường tròn là hình có tâm đối xứng. Tâm của đường tròn là tâm đối xứng của đường tròn đó.
b) Trục đối xứng
Đường tròn là hình có trục đối xứng. Bất kì đường kính nào cũng là trục đối xứng của đường tròn.
* Trong tam giác vuông trung điểm cạnh huyền là tâm đường tròn ngoại tiếp.
* Trong tam giác đều , tâm đường tròn ngoại tiếp là trọng tâm tam giác đó.
CÁC DẠNG TOÁN THƯỜNG GẶP
Dạng 1: Chứng minh các điểm cho trước cùng thuộc một đường tròn.
Phương pháp:
Chứng minh các điểm cho trước cùng cách đều một điểm nào đó. Điểm đó chính là tâm của đường tròn
Dạng 2: Xác định vị trí tương đối của một điểm đối với một đường tròn
Phương pháp:
Để xác định vị trí của điểm $M$ đối với đường tròn $\left( {O;R} \right)$ ta so sánh khoảng cách $OM$ với bán kính $R$ theo bảng sau:
Vị trí tương đối | Hệ thức |
$M$ nằm trên đường tròn $\left( O \right)$ | \(OM = R\) |
$M$ nằm trong đường tròn $\left( O \right)$ | \(OM < R\) |
$M$ nằm ngoài đường tròn $\left( O \right)$ | \(OM > R\) |
Dạng 3: Xác định tâm và tính bán kính đường tròn ngoại tiếp
Phương pháp:
Ta thường sử dụng các kiến thức
- Sử dụng tính chất đường trung tuyến trong tam giác vuông.
- Dùng định lý Pytago.
- Dùng hệ thức lượng về cạnh và góc trong tam giác vuông.
Đề thi vào 10 môn Toán Bến Tre
Bài 29
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 9
Bài 28. Vùng Tây Nguyên
Bài 13. Vai trò đặc điểm phát triển và phân bố của dịch vụ