Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác
Bài tập cuối chương IX
Bài 32. Quan hệ giữa đường vuông góc và đường xiên
Luyện tập chung trang 70
Luyện tập chung trang 82
Bài 33. Quan hệ giữa ba cạnh của một tam giác
Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
I. Các kiến thức cần nhớ
Định nghĩa tỉ lệ thức
+ Tỉ lệ thức là đẳng thức của hai tỉ số \(\dfrac{a}{b} = \dfrac{c}{d}\)
+ Tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) còn được viết là \(a:b = c:d\)
Ví dụ: \(\dfrac{{28}}{{24}} = \dfrac{7}{6};\)\(\dfrac{3}{{10}} = \dfrac{{2,1}}{7}\)
Tính chất tỉ lệ thức
+ Tính chất 1 (tính chất cơ bản của tỉ lệ thức)
Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d = b.c\)
+ Tính chất 2 (điều kiện để bốn số lập thành tỉ lệ thức): Nếu \(ad=bc\) và \(a,b,c,d \ne 0\) thì ta có các tỉ lệ thức
\(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a};\) \(\dfrac{d}{c} = \dfrac{b}{a}.\)
Ví dụ: Ta có \(\dfrac{3}{6} = \dfrac{9}{{18}} \Rightarrow 3.18 = 9.6\left( { = 54} \right)\)
Vì \(4.9 = 3.12(=36)\) nên ta có các tỉ lệ thức sau: \(\dfrac{4}{3} = \dfrac{{12}}{9};\,\dfrac{3}{4} = \dfrac{9}{{12}};\dfrac{4}{{12}} = \dfrac{3}{9};\dfrac{{12}}{4} = \dfrac{9}{3}\)
II. Các dạng toán thường gặp
Dạng 1: Lập tỉ lệ thức từ đẳng thức cho trước
Phương pháp:
Ta sử dụng: Nếu \(a.d = b.c\) thì
\(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a};\) \(\dfrac{d}{c} = \dfrac{b}{a}.\)
Dạng 2: Tìm x, y
Phương pháp:
Sử dụng tính chất cơ bản của tỉ lệ thức: Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d = b.c\)
Trong một tỉ lệ thức ta có thể tìm một số hạng chưa biết khi biết ba số hạng còn lại.
\(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow a = \dfrac{{bc}}{d};\,b = \dfrac{{ad}}{c};\)\(c = \dfrac{{ad}}{b};\,d = \dfrac{{bc}}{a}\) .
Ví dụ: Tìm x biết \(\dfrac{x}{2} = \dfrac{8}{6}\)
Ta có:
\(\begin{array}{l}
\dfrac{x}{2} = \dfrac{8}{6}\\
\Rightarrow x.6 = 8.2\\
\Rightarrow x = \dfrac{{16}}{6}\\
\Rightarrow x = \dfrac{8}{3}
\end{array}\)
Dạng 3: Chứng minh các tỉ lệ thức
Phương pháp:
Dựa vào các tính chất của tỉ lệ thức và biến đổi linh hoạt để chứng minh.
Phần 1. Chất và sự biến đổi của chất
Chương II. Số thực
Chủ đề 11. Cơ thể sinh vật là một thể thống nhất
Bài 6: Tôn sư trọng đạo
Bài 14: Bảo vệ môi trường và tài nguyên thiên nhiên
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7