PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

Lý thuyết phương trình tích

1. Phương trình tích và cách giải

Phương trình tích có dạng: \(A(x).B(x) = 0\)

Để giải phương trình này ta áp dụng công thức:

\(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0\)

Ví dụ: \(\left( {x - 4} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 4 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 4\\x =  - 1\end{array} \right.\)

2. Cách giải các phương trình đưa được về dạng phương trình tích.

Bước 1: Đưa phương trình đã cho về dạng tổng quát \(A(x).B(x) = 0\) bằng cách: 

- Chuyển tất cả các hạng tử của phương trình về vế trái. Khi đó vế phải bằng 0.

- Rút gọn rồi phân tích đa thức ở vế phải thành nhân tử.

Bước 2: Giải phương trình tích rồi kết luận.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved