Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác
Bài tập cuối chương IX
Bài 32. Quan hệ giữa đường vuông góc và đường xiên
Luyện tập chung trang 70
Luyện tập chung trang 82
Bài 33. Quan hệ giữa ba cạnh của một tam giác
Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
I. Các kiến thức cần nhớ
Định nghĩa đại lượng tỉ lệ thuận
+ Nếu đại lượng $y$ liên hệ với đại lượng $x$ theo công thức \(y = kx\) (với $k$ là hằng số khác $0$ ) thì ta nói $y$ tỉ lệ thuận với $x$ theo hệ số tỉ lệ $k.$
+ Khi đại lượng $y$ tỉ lệ thuận với đại lượng $x$ theo hệ số tỉ lệ $k$ (khác $0$ ) thì $x$ cũng tỉ lệ thuận với $y$ theo hệ số tỉ lệ \(\dfrac{1}{k}\) và ta nói hai đại lượng đó tỉ lệ thuận với nhau.
Ví dụ: Nếu \(y = 3x\) thì $y$ tỉ lệ thuận với $x$ theo hệ số $3$, hay $x$ tỉ lệ thuận với $y$ theo hệ số \(\dfrac{1}{3}.\)
Tính chất:
* Nếu hai đại lượng tỉ lệ thuận với nhau thì:
+ Tỉ số hai giá trị tương ứng của chúng luôn luôn không đổi.
+ Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.
* Nếu hai đại lượng $y$ và $x$ tỉ lệ thuận với nhau theo tỉ số \(k\) thì: \(y = kx;\)
\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}} = ... = k\) ; \(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_1}}}{{{y_2}}};\dfrac{{{x_1}}}{{{x_3}}} = \dfrac{{{y_1}}}{{{y_3}}};...\)
II. Các dạng toán thường gặp
Dạng 1: Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ thuận
Phương pháp:
+ Xác định hệ số tỉ lệ \(k.\)
+ Dùng công thức \(y = kx\) để tìm các giá trị tương ứng của \(x\) và \(y.\)
Dạng 2: Xét tương quan tỉ lệ thuận giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng
Phương pháp:
Xét xem tất cả các thương của các giá trị tương ứng của hai đại lượng xem có bằng nhau không?
Nếu bằng nhau thì hai đại lượng tỉ lệ thuận.
Nếu không bằng nhau thì hai đại lượng không tỉ lệ thuận.
Dạng 3: Bài toán về đại lượng tỉ lệ thuận
Phương pháp:
+ Xác định tương quan tỉ lệ thuận giữa hai đại lượng
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ thuận.
Dạng 4: Chia một số thành những phần tỉ lệ thuận với các số cho trước
Phương pháp:
Giả sử chia số \(P\) thành ba phần \(x,\,y,\,z\) tỉ lệ với các số \(a,b,c\), ta làm như sau:
\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y + z}}{{a + b + c}} = \dfrac{P}{{a + b + c}}\)
Từ đó \(x = \dfrac{P}{{a + b + c}}.a;\,y = \dfrac{P}{{a + b + c}}.b\); \(z = \dfrac{P}{{a + b + c}}.c\).
Revision (Units 1-6)
Vở thực hành Khoa học tự nhiên 7 - Tập 2
Chương 5: Thu thập và biểu diễn dữ liệu
Toán 7 tập 1 - Chân trời sáng tạo
Unit 6. Be green
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7