Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
1.Công thức nghiệm của phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$
Xét phương trình bậc hai một ẩn $a{x^2} + bx + c = 0\,\,(a \ne 0)$
và biệt thức $\Delta = {b^2} - 4ac$.
TH1. Nếu $\Delta < 0$ thì phương trình vô nghiệm.
TH2. Nếu $\Delta = 0$ thì phương trình có nghiệm kép: ${x_1} = {x_2} = - \dfrac{b}{{2a}}$.
TH3. Nếu $\Delta > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1}} = \dfrac{{ - b + \sqrt \Delta }}{{2a}}$, ${x_{2}} = \dfrac{{ - b - \sqrt \Delta }}{{2a}}$.
Chú ý: Nếu phương trình \(a{x^2} + bx + c = 0\, (a \ne 0)\) có \(a\) và \(c\) trái dấu, tức là \(ac < 0\). Do đó \(\Delta = {b^2} - 4ac > 0\). Vì thế phương trình có hai nghiệm phân biệt.
2. Các dạng toán thường gặp
Dạng 1: Nhận dạng phương trình bậc hai một ẩn
Phương pháp:
Phương trình bậc hai một ẩn ( hay gọi tắt là phương trình bậc hai) là phương trình có dạng:
$a{x^2} + bx + c = 0\,\,(a \ne 0)$ trong đó $a,b,c$ là các số thực cho trước, $x$ là ẩn số.
Dạng 2: Giải phương trình bậc hai một ẩn không dùng công thức nghiệm
Phương pháp:
Ta thường sử dụng các cách sau:
Cách 1: Đưa phương trình đã cho về dạng vế trái là một bình phương, vế còn lại là một số hoặc một bình phương.
Cách 2: Đưa phương trình về dạng phương trình tích.
Dạng 3: Giải phương trình bậc hai một ẩn bằng cách sử dụng công thức nghiệm.
Phương pháp:
Xét phương trình bậc hai: $a{x^2} + bx + c = 0\,\,(a \ne 0)$
Bước 1: Xác định các hệ số $a,b,c$ và tính biệt thức $\Delta = {b^2} - 4ac$
Bước 2: Kết luận
- Nếu $\Delta < 0$ thì phương trình vô nghiệm.
- Nếu $\Delta = 0$ thì phương trình có nghiệm kép: ${x_1} = {x_2} = - \dfrac{b}{a}$
- Nếu $\Delta > 0$ thì phương trình có hai nghiệm phân biệt: ${x_1} = \dfrac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \dfrac{{ - b - \sqrt \Delta }}{{2a}}$.
Dạng 4: Xác định số nghiệm của phương trình bậc hai
Phương pháp:
Xét phương trình bậc hai: $a{x^2} + bx + c = 0\,\,(a \ne 0)$
1. PT có nghiệm kép $ \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta = 0\end{array} \right.$
2. PT có hai nghiệm phân biệt $ \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta > 0\end{array} \right.$
3. PT vô nghiệm $ \Leftrightarrow a \ne 0;\,\Delta < 0$.
CHƯƠNG IV. BIẾN DỊ
Đề thi vào 10 môn Văn Bình Dương
Bài 1
Đề ôn tập học kì 2 – Có đáp án và lời giải
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Tiếng Anh lớp 9