PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1

Phần câu hỏi bài 3 trang 52, 53 Vở bài tập toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 9.
Câu 10.
Câu 11.
Câu 12.
Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 9.
Câu 10.
Câu 11.
Câu 12.

Câu 9.

Khoanh tròn vào chữ cái trước kết quả đúng.

Ta có:

\(\begin{array}{l}(A)\,\,\dfrac{{x + 1}}{{{x^2} + x + 1}} = \dfrac{1}{{{x^2}}}\\(B)\,\,\dfrac{{x + 1}}{{{x^2} + x + 1}} = \dfrac{0}{{{x^2}}}\\(C)\,\,\dfrac{{x + 1}}{{{x^2} + x}} = \dfrac{1}{{{x^2}}}\\(D)\,\dfrac{{x + 1}}{{{x^2} + x}} = \dfrac{1}{x}\end{array}\) 

Phương pháp giải:

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung).

Giải chi tiết:

+) \(\dfrac{1}{{{x^2}}} = \dfrac{{1.\left( {x + 1} \right)}}{{{x^2}.\left( {x + 1} \right)}} \)\(= \dfrac{{x + 1}}{{{x^3} + {x^2}}} \ne \dfrac{{x + 1}}{{{x^2} + x + 1}}\)

+) \(\dfrac{{x + 1}}{{{x^2} + x + 1}} = 0\) nếu \(x =  - 1\)

   \(\dfrac{0}{{{x^2}}} = 0\)  với mọi x

\( \Rightarrow \dfrac{{x + 1}}{{{x^2} + x + 1}} \ne \dfrac{0}{{{x^2}}}\)

+) \(\dfrac{1}{{{x^2}}} = \dfrac{{1.\left( {x + 1} \right)}}{{{x^2}.\left( {x + 1} \right)}} \)\(= \dfrac{{x + 1}}{{{x^3} + {x^2}}} \ne \dfrac{{x + 1}}{{{x^2} + x}}\)

+) \(\dfrac{{x + 1}}{{{x^2} + x}} = \dfrac{{x + 1}}{{x\left( {x + 1} \right)}} = \dfrac{1}{x}\)

Chọn D. 

Câu 10.

Dùng cách rút gọn phân thức suy ra rằng phải điền đa thức nào sau đây vào chỗ trống trong đẳng thức \(\dfrac{{3{x^2} + x}}{{2{x^2}}} = \dfrac{{...}}{{2x}}\)

\(\begin{array}{l}(A)\,\,1 + x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\,3x\\(C)\,\,3x + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\,3{x^2}\end{array}\) 

Phương pháp giải:

Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung). 

Giải chi tiết:

\(\dfrac{{3{x^2} + x}}{{2{x^2}}} = \dfrac{{x\left( {3x + 1} \right)}}{{x.2x}} = \dfrac{{3x + 1}}{{2x}}\)

Chọn C. 

Câu 11.

Khoanh tròn vào chữ cái trước kết quả đúng. Rút gọn phân thức \(\dfrac{{3\left( {x - 1} \right)}}{{{x^2} - 1}}\)  ta được phân thức nào sau đây:

\(\begin{array}{l}(A)\,\,\dfrac{3}{x}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\,\dfrac{{ - 3}}{{x - 1}}\\(C)\,\,\,\dfrac{3}{{x + 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\,\dfrac{1}{x}\end{array}\) 

Phương pháp giải:

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung). 

- Áp dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)

Giải chi tiết:

\(\dfrac{{3\left( {x - 1} \right)}}{{{x^2} - 1}} = \dfrac{{3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{3}{{x + 1}}\)

Chọn C. 

Câu 12.

Khoanh tròn vào chữ cái trước cách rút gọn đúng.

\(\begin{array}{l}(A)\,\,\dfrac{{2 - x}}{{x\left( {x - 2} \right)}} = \dfrac{2}{{x - 2}}\\(B)\,\,\dfrac{{2 - x}}{{x\left( {x - 2} \right)}} = \dfrac{{ - 1}}{x}\\(C)\,\,\dfrac{{2 - x}}{{x\left( {x - 2} \right)}} = \dfrac{1}{x}\\(D)\,\,\dfrac{{2 - x}}{{x\left( {x - 2} \right)}} = \dfrac{2}{{2 - x}}\end{array}\) 

Phương pháp giải:

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho. 

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung). 

Giải chi tiết:

\(\begin{array}{l}+)\,\dfrac{2}{{x - 2}} = \,\,\dfrac{{2.x}}{{\left( {x - 2} \right).x}} \\= \dfrac{{2x}}{{x\left( {x - 2} \right)}} \ne \dfrac{{2 - x}}{{x\left( {x - 2} \right)}}\\+)\,\dfrac{{2 - x}}{{x\left( {x - 2} \right)}} = \dfrac{{ - \left( {x - 2} \right)}}{{x\left( {x - 2} \right)}} = \dfrac{{ - 1}}{x}\\+)\,\dfrac{{2 - x}}{{x\left( {x - 2} \right)}} = \dfrac{{ - \left( {x - 2} \right)}}{{x\left( {x - 2} \right)}} \\= \dfrac{{ - 1}}{x} \ne \dfrac{1}{x}\\+)\,\dfrac{2}{{2 - x}} = \dfrac{{ - 2}}{{ - \left( {2 - x} \right)}} \\= \dfrac{{ - 2}}{{x - 2}} = \dfrac{{ - 2x}}{{x\left( {x - 2} \right)}} \ne \dfrac{{2 - x}}{{x\left( {x - 2} \right)}}\end{array}\)

Chọn B.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved