Bài 4. Biểu đồ hình quạt tròn
Bài 6. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
Hoạt động thực hành và trải nghiệm. Chủ đề 3: Dung tích phổi
Bài tập cuối chương V
Bài 1. Thu thập, phân loại và biểu diễn dữ liệu
Bài 2. Phân tích và xử lí dữ liệu
Bài 3. Biểu đồ đoạn thẳng
Bài 5. Biến cố trong một số trò chơi đơn giản
Bài 11. Tính chất ba đường phân giác của tam giác
Bài 12. Tính chất ba đường trung trực của tam giác
Bài 13. Tính chất ba đường cao của tam giác
Bài 1. Tổng các góc của một tam giác
Bài 2. Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
Bài 3. Hai tam giác bằng nhau
Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc
Bài 4. Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh
Bài 10. Tính chất ba đường trung tuyến của tam giác
Bài 5. Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh
Bài 7. Tam giác cân
Bài 9. Đường trung trực của một đoạn thẳng
Bài 8. Đường vuông góc và đường xiên
Bài tập cuối chương VII
III. Dấu hiệu nhận biết
HĐ 3
Cho tam giác ABC thỏa mãn \(\widehat B = \widehat C\). Kẻ AH vuông góc với BC, H thuộc BC (Hình 74).
a) Hai tam giác BAH và CAH có bằng nhau hay không? Vì sao?
b) Hai cạnh AB và AC có bằng nhau hay không? Vì sao?
Phương pháp giải:
a) Xét hai tam giác BAH và CAH theo trường hợp g.c.g.
b) Sử dụng kết quả phần a) để xét hai cạnh AB và AC. Hai tam giác bằng nhau thì các cặp cạnh tương ứng bằng nhau
Lời giải chi tiết:
a) \(\widehat B = \widehat C\). Mà tổng ba góc trong một tam giác bằng 180° nên \(\widehat {BAH} = \widehat {CAH}\).
Xét hai tam giác BAH và CAH có:
\(\widehat {BAH} = \widehat {CAH}\);
AH chung;
\(\widehat {AHB} = \widehat {AHC}\) (= 90°).
Vậy \(\Delta BAH = \Delta CAH\)(g.c.g)
b) \(\Delta BAH = \Delta CAH\) nên AB = AC ( 2 cạnh tương ứng).
LT - VD
Cho tam giác ABC cân tại A. Qua điểm M nằm giữa A và B kẻ đường thẳng song song với BC, cắt cạnh AC tại N. Chứng minh tam giác AMN cân.
Phương pháp giải:
Chứng minh tam giác AMN cân bằng cách chứng minh hai góc AMN và ANM bằng nhau.
Lời giải chi tiết:
Ta có tam giác ABC cân mà MN // BC. Nên \(\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\)(đồng vị)
Mà \(\widehat {ABC} = \widehat {ACB}\)(tam giác ABC cân) nên \(\widehat {AMN} = \widehat {ANM}\).
Vậy tam giác AMN cân tại A ( Tam giác có 2 góc bằng nhau)
Bài 7. Trí tuệ dân gian
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Giáo dục công dân lớp 7
Bài 1. Bầu trời tuổi thơ
Bài 10: Giữ gìn và phát huy truyền thống tốt đẹp của gia đình, dòng họ
Chương 2: Số thực
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7