Câu hỏi mục I trang 18

Lựa chọn câu hỏi để xem giải nhanh hơn
Câu hỏi khởi động
Hoạt động
Luyện tập – vận dụng 1
Luyện tập – vận dụng 2
Luyện tập – vận dụng 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Câu hỏi khởi động
Hoạt động
Luyện tập – vận dụng 1
Luyện tập – vận dụng 2
Luyện tập – vận dụng 3

Câu hỏi khởi động

Làm thế nào để khai triển các biểu thức \({\left( {a + b} \right)^4},{\left( {a + b} \right)^5}\) một cách nhanh chóng?

Lời giải chi tiết:

Đề khai triển các biểu thức \({\left( {a + b} \right)^4},{\left( {a + b} \right)^5}\) một cách nhanh chóng, chúng ta sẽ sử dụng khai triển của Nhị thức Newton.

Hoạt động

Lời giải chi tiết:

a) Ta có: \(C_3^0 = 1,C_3^1 = 3,C_3^2 = 3,C_3^2 = 1\)

b) Ta có: \({\left( {a + b} \right)^3} = C_3^0.{a^3} + C_3^1.{a^{3 - 1}}.{b^1} + C_3^2.{a^{3 -2}}.{b^2} + C_3^3.{b^3}\)

Trong tổng trên, số hạng đầu tiên có dạng \(C_3^0.{a^3}\), số hạng cuối cùng có dạng \(C_3^3.{b^3}\), mỗi số hạng còn lại đều có dạng \(C_3^k{a^{3 - k}}{b^k}\)

Luyện tập – vận dụng 1

Khai triển biểu thức \({\left( {2 + x} \right)^4}\)

Lời giải chi tiết:

Ta có: \({\left( {2 + x} \right)^4} = {2^4} + {4.2^3}.{x^1} + {6.2^2}.{x^2} + {4.2^1}.{x^3} + {x^4} = 16 + 32x + 24{x^2} + 8{x^3} + {x^4}\)

Luyện tập – vận dụng 2

Khai triển biểu thức: \({\left( {2 - 3y} \right)^4}\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}{\left( {2 - 3y} \right)^4} = {\left[ {2 + \left( { - 3y} \right)} \right]^4} = {2^4} + {4.2^3}.\left( { - 3y} \right) + {6.2^2}.{\left( { - 3y} \right)^2} + {4.2^1}.{\left( { - 3y} \right)^3} + {\left( { - 3y} \right)^4}\\ = 16 - 96y + 216{y^2} - 216{y^3} + 81{y^4}\end{array}\)

Luyện tập – vận dụng 3

Tính: a) \(C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4\)          b)\(C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5\)

Lời giải chi tiết:

a) \(C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4 = {\left( {1 + 1} \right)^4} = {2^4} = 16\)

b) \(C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5 = {\left( {1 - 1} \right)^5} = {0^5} = 0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved