Chuyên đề 3: Ba đường conic và ứng dụng

Câu hỏi mục 4 trang 53

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 5
HĐ 6
Luyện tập - vận dụng 3
Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 5
HĐ 6
Luyện tập - vận dụng 3

HĐ 5

Trong mặt phẳng, xét đường hypebol (H) là tập hợp các điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\), ở đó \({F_1}{F_2} = 2c\) với \(c > a > 0\). Ta chọn hệ trục tọa độ \(Oxy\) có gốc là trung điểm của đoạn thẳng \({F_1}{F_2}\). Trục \(Oy\) là đường trung trực của \({F_1}{F_2}\) và \({F_2}\) nằm trên tia \(Ox\) (Hình 16).  Khi đó \({F_1}( - c;0),{F_2}(c;0)\) là các tiêu diểm của hypebol (H)

 

Giả sử điểm \(M\left( {x;y} \right)\) thuộc hypebol (H), chứng minh:

a) \(M{F_1}^2 = {x^2} + 2cx + {c^2} + {y^2}\)

b) \(M{F_2}^2 = {x^2} - 2cx + {c^2} + {y^2}\)

c) \(M{F_1}^2 - M{F_2}^2 = 4cx\)

Lời giải chi tiết:

a) Ta có: \(\overrightarrow {M{F_1}}  = \left( { - c - x; - y} \right) \Rightarrow M{F_1}^2 = {\left( { - c - x} \right)^2} + {y^2} = {x^2} + 2cx + {c^2} + {y^2}\)

b) Ta có: \(\overrightarrow {M{F_2}}  = \left( {c - x; - y} \right) \Rightarrow M{F_2}^2 = {\left( {c - x} \right)^2} + {y^2} = {x^2} - 2cx + {c^2} + {y^2}\)

c) \(M{F_1}^2 - M{F_2}^2 = \left( {{x^2} + 2cx + {c^2} + {y^2}} \right) - \left( {{x^2} - 2cx + {c^2} + {y^2}} \right) = 4cx\)

HĐ 6

Với mỗi điểm M thuộc hypebol (H), từ hai đẳng thức \(M{F_1}^2 - M{F_2}^2 = 4cx\) và \(\left| {M{F_1} - M{F_2}} \right| = 2a\), chứng minh \(M{F_1} = \left| {a + \frac{c}{a}x} \right| = \left| {a + ex} \right|\) và \(M{F_2} = \left| {a - \frac{c}{a}x} \right| = \left| {a - ex} \right|\)

Lời giải chi tiết:

+ Ta có: \(M{F_1}^2 - M{F_2}^2 = \left( {M{F_1} - M{F_2}} \right)\left( {M{F_1} + M{F_2}} \right) = \left( {M{F_1} - M{F_2}} \right).\left| {2a} \right| = 4cx\)

\( \Rightarrow M{F_1} - M{F_2} = \frac{{2c}}{{\left| a \right|}}x\)

+ Ta có: \(\left\{ \begin{array}{l}M{F_1} + M{F_2} = \left| {2a} \right|\quad \left( 1 \right)\\M{F_1} - M{F_2} = \frac{{2c}}{{\left| a \right|}}x\quad \left( 2 \right)\end{array} \right.\)

Từ (1) và (2) suy ra:

 \(2M{F_1} = \left| {2a} \right| + \frac{{2c}}{{\left| a \right|}}x \Rightarrow M{F_1} = \left| a \right| + \frac{c}{{\left| a \right|}}x = \left| {a + \frac{c}{a}x} \right| = \left| {a + ex} \right|\)

\(M{F_2} = 2\left| a \right| - M{F_1} = 2\left| a \right| - \left( {\left| a \right| + \frac{c}{{\left| a \right|}}x} \right) = \left| a \right| - \frac{c}{{\left| a \right|}}x\)\( = \left| {a - \frac{c}{a}x} \right| = \left| {a - ex} \right|\)

 

Luyện tập - vận dụng 3

Cho hypebol (H) có phương trình chính tắc: \(\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{25}} = 1\). Giả sử điểm M là diderm chuẩn thuộc hypebol có hoành độ là 15. Tìm độ dài các bán kính qua tiêu của điểm M.

Phương pháp giải:

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) là: \(M{F_1} = \left| {a + \frac{c}{a}x} \right|;M{F_2} = \left| {a - \frac{c}{a}x} \right|\)

Lời giải chi tiết:

Ta có \(a = 12,b = 3,c = \sqrt {{a^2} + {b^2}}  = \sqrt {144 + 9}  = 3\sqrt {17} \).

Do đó \(e = \frac{{3\sqrt {17} }}{{12}} = \frac{{\sqrt {17} }}{4}\).

Vậy độ dài các bán kính qua tiêu của điểm M là:

\(M{F_1} = \left| {12 + \frac{{\sqrt {17} }}{4}.15} \right|;M{F_2} = \left| {12 - \frac{{\sqrt {17} }}{4}.15} \right|\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved