SGK Toán 11 - Kết nối tri thức với cuộc sống tập 2

Trả lời câu hỏi mục 4 trang 23, 24

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 4
Luyện tập 4
Ví dụ
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 4
Luyện tập 4
Ví dụ

Hoạt động 4

1. Nội dung câu hỏi

Cho đồ thị của hàm số \(y = {\log _2}x\) và y = 2 như Hình 6.8. Tìm khoảng giá trị của x mà đồ thị hàm số \(y = {\log _2}x\) nằm phía trên đường thẳng y = 2 và từ đó suy ra tập nghiệm của bất phương trình \({\log _2}x > 2.\)


2. Phương pháp giải

Quan sát đồ thị

 

3. Lời giải chi tiết

Khoảng giá trị của x mà đồ thị hàm số \(y = {\log _2}x\) nằm phía trên đường thẳng y = 2 là \(\left( {4; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \({\log _2}x > 2\) là \(\left( {4; + \infty } \right)\)

Luyện tập 4

1. Nội dung câu hỏi

Giải các bất phương trình sau:

a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right);\) 

b) \(2\log \left( {2x + 1} \right) > 3.\)


2. Phương pháp giải

Xét bất phương trình dạng \({\log _a}x > b\)

+) a > 1, nghiệm của bất phương trình là \(x > {a^b}\)

+) 0 < a < 1, nghiệm của bất phương trình là \(0 < x < {a^b}\)

 

3. Lời giải chi tiết

a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\)               (ĐK: \(x + 1 > 0;2 - x > 0 \Leftrightarrow  - 1 < x < 2\))

\(\begin{array}{l} \Leftrightarrow {\log _{{7^{ - 1}}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow  - {\log _7}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\log _7}{\left( {x + 1} \right)^{ - 1}} > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\left( {x + 1} \right)^{ - 1}} > 2 - x\\ \Leftrightarrow \frac{1}{{x + 1}} - 2 + x > 0\\ \Leftrightarrow \frac{{1 + \left( {x - 2} \right)\left( {x + 1} \right)}}{{x + 1}} > 0\\ \Leftrightarrow \frac{{1 + {x^2} - x - 2}}{{x + 1}} > 0 \Leftrightarrow \frac{{{x^2} - x - 1}}{{x + 1}} > 0\end{array}\)

Mà – 1 < x < 2 nên x + 1 > 0

\( \Leftrightarrow {x^2} - x - 1 > 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{1 - \sqrt 5 }}{2}\\x > \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)

KHĐK ta có \(\left[ \begin{array}{l} - 1 < x < \frac{{1 - \sqrt 5 }}{2}\\\frac{{1 + \sqrt 5 }}{2} < x < 2\end{array} \right.\)

b) \(2\log \left( {2x + 1} \right) > 3\)              (ĐK: \(2x + 1 > 0 \Leftrightarrow x > \frac{{ - 1}}{2}\))

\(\begin{array}{l} \Leftrightarrow \log \left( {2x + 1} \right) > \frac{3}{2}\\ \Leftrightarrow 2x + 1 > {10^{\frac{3}{2}}} = 10\sqrt {10} \\ \Leftrightarrow x > \frac{{10\sqrt {10}  - 1}}{2}\end{array}\)

KHĐK ta có \(x > \frac{{10\sqrt {10}  - 1}}{2}\)

Ví dụ

1. Nội dung câu hỏi

Áp suất khí quyển p (tính bằng kilopascal, viết tắt là kPa) ở độ cao h (so với mực nước biển, tính bằng km) được tính theo công thức sau:

\(\ln \left( {\frac{p}{{100}}} \right) =  - \frac{h}{7}.\)

(Theo britannica.com)

a) Tính áp suất khí quyển ở độ cao 4 km.

b) Ở độ cao trên 10 km thì áp suất khí quyển sẽ như thế nào?


2. Phương pháp giải

Sử dụng công thức \(\ln \left( {\frac{p}{{100}}} \right) =  - \frac{h}{7}.\)

 

3. Lời giải chi tiết

a) Ở độ cao 4km ta có: \(\ln \left( {\frac{p}{{100}}} \right) =  - \frac{4}{7} \Leftrightarrow \frac{p}{{100}} = {e^{\frac{{ - 4}}{7}}} \Leftrightarrow p = 56,4718122\)

Vậy áp suất khí quyển ở độ cao 4 km là 56,4718122 kPa.

b) Ở độ cao trên 10km ta có:

\(h > 10 \Leftrightarrow \ln \left( {\frac{p}{{100}}} \right) <  - \frac{{10}}{7} \Leftrightarrow \frac{p}{{100}} < {e^{\frac{{ - 10}}{7}}} \Leftrightarrow p < 23,96510364\)

Vậy ở độ cao trên 10 km thì áp suất khí quyển bé hơn 29,96510364 kPa.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved