Hoạt động 3
1. Nội dung câu hỏi
Trong Hình 67, thanh gỗ dọc phía trên các cột và mặt đường hành lang gợi nên hình ảnh đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) song song với nhau, chiều cao của chiếc cột có đỉnh cột \(A\) là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\).
a) Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\) có phụ thuộc vào vị trí của điểm \(A\) trên đường thẳng \(\Delta \) hay không? Vì sao?
b) Khoảng cách đó gợi nên khái niệm nào trong hình học liên quan đến đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\)?
2. Phương pháp giải
Sử dụng tính chất của đường thẳng và mặt phẳng song song.
3. Lời giải chi tiết
a) Trên đường thẳng \(\Delta \) lấy điểm \(B\) khác \(A\).
Kẻ \(AH \bot \left( P \right),BK \bot \left( P \right)\left( {H,K \in \left( P \right)} \right)\)
\( \Rightarrow ABKH\) là hình chữ nhật \( \Rightarrow AH = BK\)
\( \Rightarrow d\left( {A,\left( P \right)} \right) = d\left( {B,\left( P \right)} \right)\)
Vậy khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\) không phụ thuộc vào vị trí của điểm \(A\) trên đường thẳng \(\Delta \).
b) Khoảng cách đó gợi nên khái niệm khoảng cách giữa đường thẳng và mặt phẳng song song.
Luyện tập 3
1. Nội dung câu hỏi
Cho hình chóp \(S.ABC\) có \(SA = a\), góc giữa \(SA\) và \(mp\left( {ABC} \right)\) là \({60^ \circ }\). Gọi \(M,N\) lần lượt là trung điểm của cạnh \(SA\) và \(SB\). Chứng minh \(MN\parallel \left( {ABC} \right)\) và tính \(d\left( {MN,\left( {ABC} \right)} \right)\).
2. Phương pháp giải
‒ Cách chứng minh đường thẳng song song với mặt phẳng: Chứng minh đường thẳng đó song song với một đường thẳng nằm trên mặt phẳng.
‒ Cách tính khoảng cách giữa đường thẳng và mặt phẳng song song: Tính khoảng cách từ một điểm trên đường thẳng đến mặt phẳng.
3. Lời giải chi tiết
Ta có: \(M\) là trung điểm của \(SA\)
\(N\) là trung điểm của \(SB\)
\( \Rightarrow MN\) là đường trung bình của \(\Delta SAB\)
\(\left. \begin{array}{l} \Rightarrow MN\parallel AB\\AB \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {ABC} \right)\)
\( \Rightarrow d\left( {MN,\left( {ABC} \right)} \right) = d\left( {M,\left( {ABC} \right)} \right)\)
Gọi \(H\) là hình chiếu vuông góc của \(S\) lên \(\left( {ABC} \right)\)\( \Rightarrow SH \bot \left( {ABC} \right)\)
Qua \(M\) kẻ đường thẳng song song với \(SH\), cắt \(\left( {ABC} \right)\) tại \(K\)
\( \Rightarrow K \in AH,MK \bot \left( {ABC} \right) \Rightarrow d\left( {M,\left( {ABC} \right)} \right) = MK\)
\(\begin{array}{l}SH \bot \left( {ABC} \right) \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SA,HA} \right) = \widehat {SAH} = {60^ \circ }\\ \Rightarrow SH = SA.\sin \widehat {SAH} = \frac{{a\sqrt 3 }}{2}\end{array}\)
\(M\) là trung điểm của \(SA\), \(MK\parallel SH\)
\( \Rightarrow MK\) là đường trung bình của \(\Delta SAH\)
\( \Rightarrow MK = \frac{1}{2}AH = \frac{{a\sqrt 3 }}{4}\)
Vậy \(d\left( {MN,\left( {ABC} \right)} \right) = \frac{{a\sqrt 3 }}{4}\).
Thu vịnh - Nguyễn Khuyến
CHƯƠNG 5: HIDROCACBON NO
Chương 3. Quá trình giành độc lập của các quốc gia ở Đông Nam Á
CHƯƠNG VI - KHÚC XẠ ÁNH SÁNG
Tải 40 đề thi học kì 1 mới nhất có lời giải - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11