HĐ Khám phá 4
Xét hai mệnh đề sau:
(1) Nếu ABC là tam giác đều thì nó là tam giác cân
(2) Nếu 2a – 4 > 0 thì a > 2
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Mỗi mệnh đề trên đều có dạng “Nếu P thì Q”. Chỉ ra P và Q ứng với mỗi mệnh đề đó.
Lời giải chi tiết:
a)
(1) “Nếu ABC là tam giác đều thì nó là tam giác cân” là mệnh đề đúng.
(2) “Nếu 2a – 4 >0 thì a > 2” là mệnh đề đúng.
b) Trong mệnh đề (1) “Nếu ABC là tam giác đều thì nó là tam giác cân”
P: “ABC là tam giác đều”
Q: “ABC là tam giác cân”
Trong mệnh đề (2) “Nếu 2a – 4 > 0 thì a > 2”
P: “2a – 4 > 0”
Q: “a > 2”
Chú ý
Từ “nó” trong mênh đề (1) được hiểu là “ABC”. Do đó khi chỉ ra mệnh đề Q, ta dùng “ABC” thay cho “nó” để mệnh đề được rõ nghĩa.
Thực hành 5
Xét hai mệnh đề:
P: “Hai tam giác ABC và A’B’C’ bằng nhau”.
Q: “Hai tam giác ABC và A’B’C’ có diện tích bằng nhau”.
a) Phát biểu mệnh đề \(P \Rightarrow Q\).
b) Mệnh đề \(P \Rightarrow Q\) có phải là một định lí không? Nếu có, sử dụng thuật ngữ “điều kiện cần”, “điều kiện đủ” để phát biểu định lí này theo cách khác nhau.
Phương pháp giải:
a) Mệnh đề \(P \Rightarrow Q\) phát biểu là “Nếu P thì Q”
b) Khi mệnh đề \(P \Rightarrow Q\) là một định lí, ta nói:
P là điều kiện đủ để có Q,
Q là điều kiện cần để có P.
Lời giải chi tiết:
a) Mệnh đề \(P \Rightarrow Q\): “Nếu hai tam giác ABC và A’B’C’ bằng nhau thì chúng có diện tích bằng nhau”
b) Mệnh đề \(P \Rightarrow Q\) đúng nên nó là một định lí. Hai cách phát biểu định lí là:
Hai tam giác ABC và A’B’C’ bằng nhau là điều kiện đủ để có diện tích bằng nhau.
Hai tam giác ABC và A’B’C’ có diện tích bằng nhau là điều kiện cần để chúng bằng nhau.
Thần Trụ Trời
Đăm Săn đi chinh phục nữ thần Mặt Trời
Unit 3: On screen
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử
Chương 3. Liên kết hóa học
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10