SGK Toán 11 - Kết nối tri thức với cuộc sống tập 2

Trả lời câu hỏi mục 3 trang 34, 35, 36

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 5
Hoạt động 6
Hoạt động 7
Hoạt động 8
Luyện tập 3
Hoạt động 9
Hoạt động 10
Luyện tập 4
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 5
Hoạt động 6
Hoạt động 7
Hoạt động 8
Luyện tập 3
Hoạt động 9
Hoạt động 10
Luyện tập 4

Hoạt động 5

1. Nội dung câu hỏi

Cho đường thẳng a vuông góc với mặt phẳng (P) và song song với đường thẳng b. Lấy một đường thẳng m bất kì thuộc mặt phẳng (P). Tính (b, m) và từ đó rút ra mối quan hệ giữa b và (P).


2. Phương pháp giải

Cho a, b là 2 đường thẳng phân biệt, nếu đường thẳng b // b’ thì (a, b) = (a, b’)

 

3. Lời giải chi tiết

\(\left. \begin{array}{l}a \bot \left( P \right)\\m \subset \left( P \right)\end{array} \right\} \Rightarrow a \bot m \Rightarrow \left( {a,m} \right) = {90^0}\)

a // b \( \Rightarrow \left( {a,m} \right) = \left( {b,m} \right) = {90^0}\) mà đường thẳng m bất kì thuộc mặt phẳng (P)

\( \Rightarrow \) b \( \bot \) (P).

Hoạt động 6

1. Nội dung câu hỏi

Cho hai đường thẳng phân biệt a và b cùng vuông góc với mặt phẳng (P). Xét O là một điểm thuộc a nhưng không thuộc b. Gọi c là đường thẳng qua O và song song với b.

a) Hỏi c có vuông góc với (P) hay không? Nêu nhận xét về vị trí tương đối giữa a và c.

b) Nêu nhận xét về vị trí tương đối giữa hai đường thẳng a và b.


2. Phương pháp giải

- Sử dụng kết quả của hoạt động 5 trang 34.

- Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng.

 

3. Lời giải chi tiết

a) b // c; b \( \bot \) (P) \( \Rightarrow \) c \( \bot \) (P)

Mà a \( \bot \) (P)

a, c cùng đi qua điểm O

\( \Rightarrow \) a trùng c.

b) Ta có b // c mà a trùng c nên a // b.

Hoạt động 7

1. Nội dung câu hỏi

Cho hai mặt phẳng (P) và (Q) song song với nhau và đường thẳng \(\Delta \) vuông góc với (P). Gọi b là một đường thẳng bất kì thuộc (Q). Lấy một đường thẳng a thuộc (P) sao cho a song song với b (H.7.23). So sánh (\(\Delta \), b) và (\(\Delta \), a). Từ đó rút ra mối quan hệ giữa \(\Delta \) và (Q).


2. Phương pháp giải

Sử dụng định nghĩa 2 đường thẳng vuông góc và đường thẳng vuông góc với mặt phẳng.

 

3. Lời giải chi tiết

\(\left. \begin{array}{l}\Delta  \bot \left( P \right)\\a \subset \left( P \right)\end{array} \right\} \Rightarrow \Delta  \bot a,a//b \Rightarrow \Delta  \bot b \Rightarrow \left( {\Delta ,b} \right) = {90^0}\)

\(\Delta  \bot a \Rightarrow \left( {\Delta ,a} \right) = {90^0}\)

\( \Rightarrow \) (\(\Delta \), b) = (\(\Delta \), a) mà b là đường thẳng bất kì thuộc (Q)

\( \Rightarrow \) \(\Delta  \bot \left( Q \right)\)

Hoạt động 8

1. Nội dung câu hỏi

Cho hai mặt phẳng phân biệt (P) và (Q) cùng vuông góc với đường thẳng \(\Delta \). Xét O là một điểm thuộc mặt phẳng (P) nhưng không thuộc mặt phẳng (Q). Gọi (R) là mặt phẳng đi qua O và song song với (Q) (H.7.24).

a) Hỏi (R) có vuông góc với Δ hay không? Nêu nhận xét về vị trí tương đối giữa (P) và (R).

b) Nêu vị trí tương đối giữa (P) và (Q).


2. Phương pháp giải

- Sử dụng kết quả của hoạt động 7 trang 35

- Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

 

3. Lời giải chi tiết

a) (R) // (Q); \(\Delta \) \( \bot \) (Q) \( \Rightarrow \) \(\Delta \) \( \bot \) (R)

Mà \(\Delta \) \( \bot \) (P) và (R), (Q) là 2 mặt phẳng cùng đi qua O

\( \Rightarrow \) (R) trùng (P)

b) (R) // (Q) mà  (R) trùng (P) nên (P) // (Q)

Luyện tập 3

1. Nội dung câu hỏi

Một chiếc bàn có các chân cùng vuông góc với mặt phẳng chứa mặt bàn và mặt phẳng chứa mặt sàn. Hỏi hai mặt phẳng đó có song song với nhau hay không? Vì sao?


2. Phương pháp giải

Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

 

3. Lời giải chi tiết

Ta coi chân bàn như đường thẳng và mặt bàn, mặt sàn là 2 mặt phẳng.

Một chiếc bàn có các chân cùng vuông góc với mặt phẳng chứa mặt bàn và mặt phẳng chứa mặt sàn nên hai mặt phẳng đó có song song với nhau vì hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

Hoạt động 9

1. Nội dung câu hỏi

Cho đường thẳng a song song với mặt phẳng (P) và đường thẳng \(\Delta \) vuông góc với mặt phẳng (P). Tính (\(\Delta \), a).


2. Phương pháp giải

Sử dụng định nghĩa 2 đường thẳng vuông góc và đường thẳng vuông góc với mặt phẳng.

 

3. Lời giải chi tiết

Vì a // (P) nên a // b sao cho b \( \subset \) (P)

\( \Rightarrow \) (\(\Delta \); a) = (\(\Delta \); b)

Mà \(\Delta \) \( \bot \) (P); b \( \subset \) (P) nên \(\Delta \) \( \bot \) b \( \Rightarrow \) (\(\Delta \); b) = 900

Vậy (\(\Delta \); a) = 900

Hoạt động 10

1. Nội dung câu hỏi

Cho đường thẳng a và mặt phẳng (P) cùng vuông góc với một đường thẳng \(\Delta \).

a) Qua một điểm O thuộc (P), kẻ đường thẳng a' song song với a. Nêu vị trí tương đối giữa a' và (P).

b) Nêu vị trí tương đối giữa a và (P).


2. Phương pháp giải

Sử dụng lý thuyết đường thẳng song song với mặt phẳng và đường thẳng vuông góc với mặt phẳng.

 

3. Lời giải chi tiết

a) \(\Delta  \bot a,a//a' \Rightarrow \Delta  \bot a'\)

\(\Delta  \bot a',\Delta  \bot \left( P \right)\) \( \Rightarrow \) a' // (P) hoặc a' \( \subset \) (P) mà điểm O thuộc (P) và đi qua a'

Vậy a' \( \subset \) (P).

b) a' // a; a' \( \subset \) (P) \( \Rightarrow \)a // (P) hoặc a \( \subset \) (P) vì a và (P) không phân biệt.

Luyện tập 4

1. Nội dung câu hỏi

Cho hình chóp S.ABCD có đáy ABCD là một hình vuông, SA \( \bot \) (ABCD). Kẻ AH vuông góc với SC (H thuộc SC), BM vuông góc với SC (M thuộc SC). Chứng minh rằng SC \( \bot \) (MBD) và AH // (MBD).


2. Phương pháp giải

- Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.

- Trong 1 mặt phẳng có 2 đường thẳng cùng vuông góc với đường thẳng thứ 3 thì chúng song song.

- Đường thẳng song song với mặt phẳng nếu nó song song với 1 đường thẳng nằm trong mặt phẳng đó.

 

3. Lời giải chi tiết

\(\begin{array}{l}\left. \begin{array}{l} + )AC \bot BD\,\,\left( {hv\,\,ABCD} \right)\\SA \bot BD\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\\AC \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BD \bot \left( {SAC} \right)\\\left. \begin{array}{l} + )BD \bot SC\left( {BD \bot \left( {SAC} \right)} \right)\\BM \bot SC\\BD \cap BM = \left\{ B \right\}\end{array} \right\} \Rightarrow SC \bot \left( {MBD} \right)\end{array}\)

Gọi \(AC \cap BD = \left\{ O \right\}\)

\(\left. \begin{array}{l}SC \bot \left( {MBD} \right)\\OM \subset \left( {MBD} \right)\end{array} \right\} \Rightarrow SC \bot OM\)

Mà \(AH \bot SC\)

\( \Rightarrow AH//OM,OM \subset \left( {MBD} \right) \Rightarrow AH//\left( {MBD} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved