SGK Toán 8 - Kết nối tri thức với cuộc sống tập 2
SGK Toán 8 - Kết nối tri thức với cuộc sống tập 2

Trả lời câu hỏi mục 2 trang 95, 96, 97

Lựa chọn câu hỏi để xem giải nhanh hơn
LT 2
VD 2
CH
LT 3
TTN
Lựa chọn câu hỏi để xem giải nhanh hơn
LT 2
VD 2
CH
LT 3
TTN

LT 2

1. Nội dung câu hỏi

Cho tam giác vuông với kích thước như Hình 9.37. Hãy tính độ dài x và cho biết những tam giác nào đồng dạng, viết đúng kí hiệu đồng dạng 

2. Phương pháp giải

Áp dụng định lý Pythagore trong tam giác vuông ABC vuông tại A để tính x

 

3. Lời giải chi tiết

Những tam giác đồng dạng là 

- Tam giác ABC đồng dạng với tam giác EDF với tỉ số đồng dạng là 1

- Tam giác MPN đồng dạng với tam giác ABC với tỉ số đồng dạng là \(\frac{1}{2}\)

- Tam giác MPN đồng dạng với tam giác EDF với tỉ số đồng dạng là \(\frac{1}{2}\)

VD 2

1. Nội dung câu hỏi

Để đón được một người khách, một xe taxi xuất phát từ vị trí điểm A, chạy dọc một con phố dài 3km đến điểm B thì rẽ vuông góc sang trái, chạy được 3km đến điểm C thì tài xế cho xe rẽ vuông góc sang phải, chạy 1km nữa thì gặp người khách tại điểm D (H.9.38). Hỏi lúc đầu, khoảng cách từ chỗ người lái xe đến người khác là bao nhiêu kilômét.

 

 

2. Phương pháp giải

Áp dụng định lí Pythagore trong tam giác AMD vuông tại M

 

3. Lời giải chi tiết

Ta có: BC=AM=3km

     AB=CM=3km

=> MD=CM+CD=3+1=4(km)

Xét tam giác AMD vuông tại M

=> \(A{{\rm{D}}^2} = A{M^2} + M{{\rm{D}}^2}\)

=> \(A{{\rm{D}}^2} = {3^2} + {4^2}\)

=> AD=5

Vậy lúc đầu, khoảng cách từ chỗ người lái xe đến người khách là 5km

CH

1. Nội dung câu hỏi

Cho hình 9.42, trong đó các đoạn thẳng AC, AD, AE đoạn nào có độ dài lớn nhất, đoạn nào có độ dài nhỏ nhất?


 

2. Phương pháp giải

Áp dụng định lí Pythagore trong các tam giác vuông.

 

3. Lời giải chi tiết

Áp dụng định lí Pythagore trong tam giác AHD vuông tại H có: \(A{{\rm{D}}^2} = A{H^2} + H{{\rm{D}}^2}\) (1)

Áp dụng định lí Pythagore trong tam giác AHC vuông tại H có: \(A{C^2} = A{H^2} + H{C^2}\) (2)

Áp dụng định lí Pythagore trong tam giác AHE vuông tại H có: \(A{E^2} = A{H^2} + H{E^2}\) (3)

Vì HE > HC > HD suy ra \(H{E^2} > H{C^2} > H{{\rm{D}}^2}\)(4)

Từ (1), (2), (3), (4) suy ra: \(A{{\rm{E}}^2} > A{C^2} > A{{\rm{D}}^2} \Rightarrow A{\rm{E}} > AC > A{\rm{D}}\)

Vậy đoạn AE là lớn nhất, đoạn AD là nhỏ nhất.

LT 3

1. Nội dung câu hỏi

Trước đây chúng ta thừa nhận định lí về trường hợp bằng nhau đặc biệt của hai tam giác vuông: "Nếu một cạnh góc vuông và cạnh huyền của tam giác vuông này bằng một cạnh góc vuông và cạnh huyền của tam giác vuông kia thì hai tam giác vuông đó bằng nhau”.

 

2. Phương pháp giải

Áp dụng định lí Pythagore trong hai tam giác vuông để suy ra cặp cạnh bằng nhau

 

3. Lời giải chi tiết

- Xét tam giác ABC vuông tại A, có

\(\)\(B{C^2} = A{B^2} + A{C^2}\)(1)

- Xét tam giác A'B'C' vuông tại A' có:

\(B'C{'^2} = A'B{'^2} + A'C{'^2}\) (2)

mà AB=A’B’, BC=B’C’ (3)

=> Từ (1), (2), (3): AC= A’C’

=> Hai tam giác bằng nhau

TTN

1. Nội dung câu hỏi

Tính chiều cao theo đơn vị centimét của một tam giác đều cạnh 2cm (h.9.44) (làm tròn kết quả đến chữ số thập phân thứ hai)

2. Phương pháp giải

Vì tam giác ABC là tam giác đều, \(AH \bot BC\) nên H là trung điểm của BC.

Áp đụng định lí Pythagore trong tam giác AHC suy ra độ dài của chiều cao

 

3. Lời giải chi tiết

Vì tam giác ABC là tam giác đều, \(AH \bot BC\) nên H là trung điểm của BC suy ra

\(HB = HC = \frac{{BC}}{2} = \frac{2}{2} = 1\)(cm)

Áp đụng định lí Pythagore trong tam giác AHC ta có:

\(\begin{array}{l}A{C^2} = A{H^2} + H{C^2} \Rightarrow A{H^2} = A{C^2} - H{C^2} = {2^2} - {1^2} = 3\\ \Rightarrow AH = \sqrt 3  \approx 1,73(cm)\end{array}\)

Vậy chiều cao của tam giác đều là 1, 73 cm

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved