SGK Toán 11 - Chân trời sáng tạo tập 2

Trả lời câu hỏi mục 2 trang 84, 85

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Hoạt động 3
Thực hành 2
Vận dụng 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Hoạt động 3
Thực hành 2
Vận dụng 2

Hoạt động 2

1. Nội dung câu hỏi

Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) cắt nhau theo giao tuyến \(d\). Hãy gọi tên các nửa mặt phẳng có chung bờ \(d\). Các nửa mặt phẳng này chia không gian thành bao nhiêu phần?

 

2. Phương pháp giải

Quan sát hình ảnh và trả lời câu hỏi.

 

3. Lời giải chi tiết

Các nửa mặt phẳng có chung bờ \(d\) là: \(\left( {{P_1}} \right),\left( {{P_2}} \right),\left( {{Q_1}} \right),\left( {{Q_2}} \right)\).

Các nửa mặt phẳng này chia không gian thành 4 phần.

Hoạt động 3

1. Nội dung câu hỏi

Cho góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\). Gọi \(O\) là một điểm tuỳ ý trên \(d\). \(Ox\) là tia nằm trong \(\left( P \right)\) và vuông góc với \(d\), \(Oy\) là tia nằm trong \(\left( Q \right)\) và vuông góc với \(d\) (Hình 6).

a) Nêu nhận xét về vị trí tương đối giữa \(d\) và \(mp\left( {Ox,Oy} \right)\).

b) Nêu nhận xét về số đo của góc \(xOy\) khi \(O\) thay đổi trên \(d\).

 

2. Phương pháp giải

Sử dụng định lí: Nếu đường thẳng \(d\) vuông góc với hai đường thẳng cắt nhau \(a\) và \(b\) cùng nằm trong mặt phẳng \(\left( \alpha  \right)\) thì \(d \bot \left( \alpha  \right)\).

 

3. Lời giải chi tiết

a) Ta có:

\(\left. \begin{array}{l}d \bot Ox\\d \bot Oy\end{array} \right\} \Rightarrow d \bot mp\left( {Ox,Oy} \right)\)

b) Số đo của góc \(xOy\) không đổi khi \(O\) thay đổi trên \(d\).

Thực hành 2

1. Nội dung câu hỏi

Cho hình chóp tứ giác đều \(S.ABCD\) với \(O\) là tâm của đáy và có tất cả các cạnh đều bằng \(a\). Xác định và tính góc phẳng nhị diện:

a) \(\left[ {S,BC,O} \right]\);

b) \(\left[ {C,SO,B} \right]\).

 

2. Phương pháp giải

‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a'\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a'} \right)\).

 

3. Lời giải chi tiết

 

a) Gọi \(H\) là trung điểm của \(BC\).

\(\Delta SBC\) đều \( \Rightarrow SH \bot BC\)

\(\Delta OBC\) vuông cân tại \(O \Rightarrow OH \bot BC\)

Vậy \(\widehat {SHO}\) là góc phẳng nhị diện \(\left[ {S,BC,O} \right]\).

Ta có: \(O\) là trung điểm của \(BD\)

\(H\) là trung điểm của \(BC\)

\( \Rightarrow OH\) là đường trung bình của \(\Delta BC{\rm{D}}\)

\( \Rightarrow OH = \frac{1}{2}CD = \frac{a}{2}\)

\(AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2  \Rightarrow OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SOH\) vuông tại \(O\) có: \(SO = \sqrt {S{C^2} - O{C^2}}  = \frac{{a\sqrt 2 }}{2}\)

\(\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \sqrt 2  \Rightarrow \widehat {SHO} \approx 54,{7^ \circ }\)

b) Ta có:

\(\begin{array}{l}SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OB\\SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OC\end{array}\)

Vậy \(\widehat {BOC}\) là góc phẳng nhị diện \(\left[ {C,SO,B} \right]\).

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow \widehat {BOC} = {90^ \circ }\).

Vận dụng 2

1. Nội dung câu hỏi

Cho biết kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều với chiều cao 98 m và cạnh đáy 180 m. Tính số đo góc nhị diện tạo bởi mặt bên và mặt đáy.

(Nguồn: https://en.wikipedia.org/wiki/Memphis Pyramid)

 

2. Phương pháp giải

Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

 

3. Lời giải chi tiết

 

Mô hình hoá kim tự tháp bằng chóp tứ giác đều \(S.ABCD\) với \(O\) là tâm của đáy. Vậy \(AB = 180,SO = 98\)

Gọi \(H\) là trung điểm của \(BC\).

\(\Delta SBC\) đều \( \Rightarrow SH \bot BC\)

\(\Delta OBC\) vuông cân tại \(O \Rightarrow OH \bot BC\)

Vậy \(\widehat {SHO}\) là góc nhị diện tạo bởi mặt bên và mặt đáy.

Ta có: \(O\) là trung điểm của \(BD\)

\(H\) là trung điểm của \(BC\)

\( \Rightarrow OH\) là đường trung bình của \(\Delta BC{\rm{D}}\)

\( \Rightarrow OH = \frac{1}{2}CD = 90\)

\(\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \frac{{49}}{{45}} \Rightarrow \widehat {SHO} \approx 47,{4^ \circ }\)

Vậy số đo góc nhị diện tạo bởi mặt bên và mặt đáy là \(47,{4^ \circ }\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved