SGK Toán 11 - Chân trời sáng tạo tập 2

Trả lời câu hỏi mục 2 trang 7, 8, 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Thực hành 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Thực hành 2

Hoạt động 2

1. Nội dung câu hỏi

Một thùng gỗ hình lập phương có độ dài cạnh \(a\left( {dm} \right)\). Kí hiệu \(S\) và \(V\) lần lượt là diện tích một mặt và thể tích của thùng gỗ này.

a) Tính \(S\) và \(V\) khi \(a = 1{\rm{ }}dm\) và khi \(a = 3{\rm{ }}dm\).

b) \(a\) bằng bao nhiêu để \(S = 25{\rm{ }}d{m^2}\)?

c) \(a\) bằng bao nhiêu để \(V = 64{\rm{ }}d{m^3}\)?


2. Phương pháp giải

Sử dụng công thức tính diện tích hình vuông và thể tích hình lập phương.

 

3. Lời giải chi tiết

a) Khi \(a = 1{\rm{ }}dm\)

\(S = {a^2} = {1^2} = 1\left( {d{m^2}} \right);V = {a^3} = {1^3} = 1\left( {d{m^3}} \right)\)

Khi \(a = 3{\rm{ }}dm\)

\(S = {a^2} = {3^2} = 9\left( {d{m^2}} \right);V = {a^3} = {3^3} = 27\left( {d{m^3}} \right)\)

Thực hành 2

1. Nội dung câu hỏi

Tính giá trị các biểu thức sau:

a) \(\sqrt[4]{{\frac{1}{{16}}}}\);  

b) \({\left( {\sqrt[6]{8}} \right)^2}\);         

c) \(\sqrt[4]{3}.\sqrt[4]{{27}}\).


2. Phương pháp giải

Sử dụng các tính chất của căn bậc \(n\).

 

3. Lời giải chi tiết

a) \(\sqrt[4]{{\frac{1}{{16}}}} = \sqrt[4]{{{{\left( {\frac{1}{2}} \right)}^4}}} = \left| {\frac{1}{2}} \right| = \frac{1}{2}\)

b) \({\left( {\sqrt[6]{8}} \right)^2} = \sqrt[6]{{{8^2}}} = \sqrt[6]{{{{\left( {{2^3}} \right)}^2}}} = \sqrt[6]{{{2^6}}} = \left| 2 \right| = 2\)

c) \(\sqrt[4]{3}.\sqrt[4]{{27}} = \sqrt[4]{3}.\sqrt[4]{{{3^3}}} = \sqrt[4]{{{{3.3}^3}}} = \sqrt[4]{{{3^4}}} = \left| 3 \right| = 3\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved