Hoạt động 2
1. Nội dung câu hỏi
a) Tìm tất cả các số thực x sao cho x2 = 4.
b) Tìm tất cả các số thực x sao cho x3 = - 8.
Câu hỏi: Số âm có căn bậc chẵn không? Vì sao?
2. Phương pháp giải
Đưa 2 vế về cùng số mũ thì cơ số bằng nhau.
Câu hỏi: dựa vào khái niệm căn bậc chẵn của một số.
3. Lời giải chi tiết
a) \({x^2} = 4 = {2^2} = {\left( { - 2} \right)^2} \Leftrightarrow x = \pm 2\)
b) \({x^3} = - 8 = {\left( { - 2} \right)^3} \Leftrightarrow x = - 2.\)
Câu hỏi:
Trong toán học, căn bậc chẵn của một số là một số lớn hơn 0. Do đó số âm không có căn bậc chẵn.
Luyện tập 2
1. Nội dung câu hỏi
Tính:
a) \(\sqrt[3]{{ - 125}}\);
b) \(\sqrt[4]{{\frac{1}{{81}}}}.\)
2. Phương pháp giải
Số b được gọi là căn bậc n của số a nếu bn = a.
3. Lời giải chi tiết
a) \(\sqrt[3]{{ - 125}} = \sqrt[3]{{{{\left( { - 5} \right)}^3}}} = - 5.\)
b) \(\sqrt[4]{{\frac{1}{{81}}}} = \sqrt[4]{{{{\left( {\frac{1}{3}} \right)}^4}}} = \frac{1}{3}.\)
Hoạt động 3
1. Nội dung câu hỏi
a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)
b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)
2. Phương pháp giải
Số b được gọi là căn bậc n của số a nếu bn = a.
3. Lời giải chi tiết
a) \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}} = \sqrt[3]{{{{\left( { - 2} \right)}^3}}}.\sqrt[3]{{{3^3}}} = - 2.3 = - 6\)
\(\begin{array}{l}\sqrt[3]{{\left( { - 8} \right).27}} = \sqrt[3]{{ - 216}} = \sqrt[3]{{{{\left( { - 6} \right)}^3}}} = - 6\\ \Rightarrow \sqrt[3]{{ - 8}}.\sqrt[3]{{27}} = \sqrt[3]{{\left( { - 8} \right).27}}\end{array}\)
b) \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}} = \frac{{\sqrt[3]{{{{\left( { - 2} \right)}^3}}}}}{{\sqrt[3]{{{3^3}}}}} = \frac{{ - 2}}{3}\)
\(\begin{array}{l}\sqrt[3]{{\frac{{ - 8}}{{27}}}} = \sqrt[3]{{{{\left( {\frac{{ - 2}}{3}} \right)}^3}}} = \frac{{ - 2}}{3}\\ \Rightarrow \frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}} = \sqrt[3]{{\frac{{ - 8}}{{27}}}}.\end{array}\)
Luyện tập 3
1. Nội dung câu hỏi
Tính:
a) \(\sqrt[3]{5}:\sqrt[3]{{625}};\)
b) \(\sqrt[5]{{ - 25\sqrt 5 }}.\)
2. Phương pháp giải
Sử dụng công thức \(\frac{{\sqrt[n]{a}}}{{\sqrt[n]{b}}} = \sqrt[n]{{\frac{a}{b}}};{\left( {\sqrt[n]{a}} \right)^n} = a\)
3. Lời giải chi tiết
a) \(\sqrt[3]{5}:\sqrt[3]{{625}} = \sqrt[3]{{\frac{5}{{625}}}} = \sqrt[3]{{\frac{1}{{125}}}} = \sqrt[3]{{{{\left( {\frac{1}{5}} \right)}^3}}} = \frac{1}{5}.\)
b) \(\sqrt[5]{{ - 25\sqrt 5 }} = \sqrt[5]{{{{\left( { - \sqrt 5 } \right)}^5}}} = - \sqrt 5 \)
Hoạt động 4
1. Nội dung câu hỏi
Cho a là một số thực dương.
a) Với n là số nguyên dương, hãy thử định nghĩa \({a^{\frac{1}{n}}}\) sao cho \({\left( {{a^{\frac{1}{n}}}} \right)^n} = a.\)
b) Từ kết quả của câu a, hãy thử định nghĩa \({a^{\frac{m}{n}}},\) với m là số nguyên và n là số nguyên dương, sao cho \({a^{\frac{m}{n}}} = {\left( {{a^{\frac{1}{n}}}} \right)^m}.\)
Câu hỏi: Vì sao trong định nghĩa lũy thừa với số mũ hữu tỉ lại cần điều kiện cơ số a > 0?
2. Phương pháp giải
Sử dụng công thức \({\left( {\sqrt[n]{a}} \right)^n} = a\)
Câu hỏi: Lấy ví dụ để chứng minh nếu \( a \le 0\) dẫn đến mâu thuẫn.
3. Lời giải chi tiết
a) Ta có: \({\left( {\sqrt[n]{a}} \right)^n} = a\) mà \({\left( {{a^{\frac{1}{n}}}} \right)^n} = a\) nên \({\left( {{a^{\frac{1}{n}}}} \right)^n} = \sqrt[n]{a} \Rightarrow {a^{\frac{1}{n}}} = \sqrt[n]{a}\)
b) Theo câu a ta có \({a^{\frac{1}{n}}} = \sqrt[n]{a}\) mà \({a^{\frac{m}{n}}} = {\left( {{a^{\frac{1}{n}}}} \right)^m}\) nên \({a^{\frac{m}{n}}} = {\left( {\sqrt[n]{a}} \right)^m} = \sqrt[n]{{{a^m}}}\)
Câu hỏi:
+ Giả sử định nghĩa lũy thừa với số mũ r là đúng với a < 0.
Xét lũy thừa $(-1)^{\frac{1}{3}}$. Theo định nghĩa ta có $(-1)^{\frac{1}{3}}=\sqrt[3]{(-1)^1}=-1$
Mặt khác, do $\frac{1}{3}=\frac{2}{6}$ nên $(-1)^{\frac{1}{3}}=(-1)^{\frac{2}{6}}$. Áp dụng định nghĩa ta lại có $(-1)^{\frac{2}{6}}=\sqrt[6]{(-1)^2}=1$.
Như vậy, từ định nghĩa ta chứng minh được $-1=1$
$ -1=\sqrt[3]{-1}=(-1)^{\frac{1}{3}}=(-1)^{\frac{2}{6}}=\sqrt[6]{(-1)^2}=1 $
Có thể nói, trong tình huống này định nghĩa với cơ số âm đã tự mâu thuẫn.
+ Lũy thừa có số mũ hữu tỉ với cơ số a = 0 thì dẫn đến vô nghĩa nếu mũ âm. Ví dụ $0^{\frac{-1}{2}}= \sqrt{0^{-1}} = \sqrt{\frac{1}{0}}$
Như vậy trong định nghĩa lũy thừa với số mũ hữu tỉ cần điều kiện cơ số a > 0
Luyện tập 4
1. Nội dung câu hỏi
Rút gọn biểu thức: \(A = \frac{{{x^{\frac{3}{2}}}y + x{y^{\frac{3}{2}}}}}{{\sqrt x + \sqrt y }}\,\,\,\left( {x,y > 0} \right).\)
2. Phương pháp giải
Sử dụng công thức \({a^{\frac{1}{n}}} = \sqrt[n]{a}\)
3. Lời giải chi tiết
\(A = \frac{{{x^{\frac{3}{2}}}y + x{y^{\frac{3}{2}}}}}{{\sqrt x + \sqrt y }} = \frac{{xy\left( {{x^{\frac{1}{2}}} + {y^{\frac{1}{2}}}} \right)}}{{{x^{\frac{1}{2}}} + {y^{\frac{1}{2}}}}} = xy.\)
Bài 11: Tiết 2: Kinh tế khu vực Đông Nam Á - Tập bản đồ Địa lí 11
Chủ đề 3: Kĩ thuật bỏ nhỏ và chiến thuật phân chia khu vực đánh cầu
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
Chương 3: Đại cương hóa học hữu cơ
Unit 6: Social issues
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11