SGK Toán 11 - Kết nối tri thức với cuộc sống tập 2

Trả lời câu hỏi mục 2 trang 6, 7

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Luyện tập 2
Hoạt động 3
Luyện tập 3
Hoạt động 4
Luyện tập 4
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Luyện tập 2
Hoạt động 3
Luyện tập 3
Hoạt động 4
Luyện tập 4

Hoạt động 2

1. Nội dung câu hỏi

a) Tìm tất cả các số thực x sao cho x2 = 4.

b) Tìm tất cả các số thực x sao cho x3 = - 8.

Câu hỏi: Số âm có căn bậc chẵn không? Vì sao?


2. Phương pháp giải

Đưa 2 vế về cùng số mũ thì cơ số bằng nhau.

Câu hỏi: dựa vào khái niệm căn bậc chẵn của một số.

 

3. Lời giải chi tiết

a) \({x^2} = 4 = {2^2} = {\left( { - 2} \right)^2} \Leftrightarrow x =  \pm 2\)

b) \({x^3} =  - 8 = {\left( { - 2} \right)^3} \Leftrightarrow x =  - 2.\)

Câu hỏi:

Trong toán học, căn bậc chẵn của một số là một số lớn hơn 0. Do đó số âm không có căn bậc chẵn.

Luyện tập 2

1. Nội dung câu hỏi

Tính:

a) \(\sqrt[3]{{ - 125}}\);                            

b) \(\sqrt[4]{{\frac{1}{{81}}}}.\)


2. Phương pháp giải

Số b được gọi là căn bậc n của số a nếu bn = a.

 

3. Lời giải chi tiết

a) \(\sqrt[3]{{ - 125}} = \sqrt[3]{{{{\left( { - 5} \right)}^3}}} =  - 5.\)

b) \(\sqrt[4]{{\frac{1}{{81}}}} = \sqrt[4]{{{{\left( {\frac{1}{3}} \right)}^4}}} = \frac{1}{3}.\)

Hoạt động 3

1. Nội dung câu hỏi

a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)

b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)


2. Phương pháp giải

Số b được gọi là căn bậc n của số a nếu bn = a.

 

3. Lời giải chi tiết

a) \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}} = \sqrt[3]{{{{\left( { - 2} \right)}^3}}}.\sqrt[3]{{{3^3}}} =  - 2.3 =  - 6\)

\(\begin{array}{l}\sqrt[3]{{\left( { - 8} \right).27}} = \sqrt[3]{{ - 216}} = \sqrt[3]{{{{\left( { - 6} \right)}^3}}} =  - 6\\ \Rightarrow \sqrt[3]{{ - 8}}.\sqrt[3]{{27}} = \sqrt[3]{{\left( { - 8} \right).27}}\end{array}\)

b) \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}} = \frac{{\sqrt[3]{{{{\left( { - 2} \right)}^3}}}}}{{\sqrt[3]{{{3^3}}}}} = \frac{{ - 2}}{3}\)

\(\begin{array}{l}\sqrt[3]{{\frac{{ - 8}}{{27}}}} = \sqrt[3]{{{{\left( {\frac{{ - 2}}{3}} \right)}^3}}} = \frac{{ - 2}}{3}\\ \Rightarrow \frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}} = \sqrt[3]{{\frac{{ - 8}}{{27}}}}.\end{array}\)

Luyện tập 3

1. Nội dung câu hỏi

Tính:

a) \(\sqrt[3]{5}:\sqrt[3]{{625}};\)                          

b) \(\sqrt[5]{{ - 25\sqrt 5 }}.\)


2. Phương pháp giải

Sử dụng công thức \(\frac{{\sqrt[n]{a}}}{{\sqrt[n]{b}}} = \sqrt[n]{{\frac{a}{b}}};{\left( {\sqrt[n]{a}} \right)^n} = a\)

 

3. Lời giải chi tiết

a) \(\sqrt[3]{5}:\sqrt[3]{{625}} = \sqrt[3]{{\frac{5}{{625}}}} = \sqrt[3]{{\frac{1}{{125}}}} = \sqrt[3]{{{{\left( {\frac{1}{5}} \right)}^3}}} = \frac{1}{5}.\)

b) \(\sqrt[5]{{ - 25\sqrt 5 }} = \sqrt[5]{{{{\left( { - \sqrt 5 } \right)}^5}}} =  - \sqrt 5 \)

Hoạt động 4

1. Nội dung câu hỏi

Cho a là một số thực dương.

a) Với n là số nguyên dương, hãy thử định nghĩa \({a^{\frac{1}{n}}}\) sao cho \({\left( {{a^{\frac{1}{n}}}} \right)^n} = a.\)

b) Từ kết quả của câu a, hãy thử định nghĩa \({a^{\frac{m}{n}}},\) với m là số nguyên và n là số nguyên dương, sao cho \({a^{\frac{m}{n}}} = {\left( {{a^{\frac{1}{n}}}} \right)^m}.\)

Câu hỏi: Vì sao trong định nghĩa lũy thừa với số mũ hữu tỉ lại cần điều kiện cơ số a > 0?


2. Phương pháp giải

Sử dụng công thức \({\left( {\sqrt[n]{a}} \right)^n} = a\)

Câu hỏi: Lấy ví dụ để chứng minh nếu \( a \le 0\) dẫn đến mâu thuẫn.

 

3. Lời giải chi tiết

a) Ta có: \({\left( {\sqrt[n]{a}} \right)^n} = a\) mà \({\left( {{a^{\frac{1}{n}}}} \right)^n} = a\) nên \({\left( {{a^{\frac{1}{n}}}} \right)^n} = \sqrt[n]{a} \Rightarrow {a^{\frac{1}{n}}} = \sqrt[n]{a}\)

b) Theo câu a ta có \({a^{\frac{1}{n}}} = \sqrt[n]{a}\) mà \({a^{\frac{m}{n}}} = {\left( {{a^{\frac{1}{n}}}} \right)^m}\) nên \({a^{\frac{m}{n}}} = {\left( {\sqrt[n]{a}} \right)^m} = \sqrt[n]{{{a^m}}}\)

Câu hỏi: 

+ Giả sử định nghĩa lũy thừa với số mũ r là đúng với a < 0.

Xét lũy thừa $(-1)^{\frac{1}{3}}$. Theo định nghĩa ta có $(-1)^{\frac{1}{3}}=\sqrt[3]{(-1)^1}=-1$

Mặt khác, do $\frac{1}{3}=\frac{2}{6}$ nên $(-1)^{\frac{1}{3}}=(-1)^{\frac{2}{6}}$. Áp dụng định nghĩa ta lại có $(-1)^{\frac{2}{6}}=\sqrt[6]{(-1)^2}=1$.

Như vậy, từ định nghĩa ta chứng minh được $-1=1$
$ -1=\sqrt[3]{-1}=(-1)^{\frac{1}{3}}=(-1)^{\frac{2}{6}}=\sqrt[6]{(-1)^2}=1 $

Có thể nói, trong tình huống này định nghĩa với cơ số âm đã tự mâu thuẫn.

+ Lũy thừa có số mũ hữu tỉ với cơ số a = 0 thì dẫn đến vô nghĩa nếu mũ âm. Ví dụ $0^{\frac{-1}{2}}= \sqrt{0^{-1}} = \sqrt{\frac{1}{0}}$

Như vậy trong định nghĩa lũy thừa với số mũ hữu tỉ cần điều kiện cơ số a > 0

Luyện tập 4

1. Nội dung câu hỏi

Rút gọn biểu thức: \(A = \frac{{{x^{\frac{3}{2}}}y + x{y^{\frac{3}{2}}}}}{{\sqrt x  + \sqrt y }}\,\,\,\left( {x,y > 0} \right).\)


2. Phương pháp giải

Sử dụng công thức \({a^{\frac{1}{n}}} = \sqrt[n]{a}\)

 

3. Lời giải chi tiết

\(A = \frac{{{x^{\frac{3}{2}}}y + x{y^{\frac{3}{2}}}}}{{\sqrt x  + \sqrt y }} = \frac{{xy\left( {{x^{\frac{1}{2}}} + {y^{\frac{1}{2}}}} \right)}}{{{x^{\frac{1}{2}}} + {y^{\frac{1}{2}}}}} = xy.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved