Luyện tập chung trang 68
Luyện tập chung trang 85
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 12. Tổng các góc trong một tam giác
Bài tập cuối chương IV
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 74
HĐ 2
Vẽ hai đường thẳng song song a,b. Kẻ đường thẳng c cắt đường thẳng a tại A và cắt đường thẳng b tại B. Trên Hình 3.34:
a) Em hãy đo một cặp góc so le trong rồi rút ra nhận xét.
b) Em hãy đo một cặp góc đồng vị rồi rút ra nhận xét.
Phương pháp giải:
a) Chọn một cặp góc ở vị trí so le trong rồi đo góc.
b) Chọn một cặp góc ở vị trí đồng vị rồi đo góc.
Lời giải chi tiết:
a) Ta có: \(\widehat {{B_2}}\) và \(\widehat {{A_1}}\) là hai góc ở vị trí so le trong. Đo góc ta được: \(\widehat {{B_2}}\)= \(\widehat {{A_1}}\)
b) Ta có: \(\widehat {{B_1}}\) và \(\widehat {{A_1}}\) là hai góc ở vị trí đồng vị. Đo góc ta được: \(\widehat {{B_1}}\)= \(\widehat {{A_1}}\)
Luyện tập 2
1. Cho Hình 3.36, biết MN//BC, \(\widehat {ABC} = 60^\circ ,\widehat {MNC} = 150^\circ \).
Hãy tính số đo các góc BMN và ACB.
2. Cho Hình 3.37, biết rằng xx’//yy’ và zz’ \( \bot \) xx’. Tính số đo góc ABy và cho biết zz’ có vuông góc với yy’ không
Phương pháp giải:
Sử dụng tính chất: Nếu 1 đường thẳng cắt hai đường thẳng song song thì:
Hai góc so le trong bằng nhau
Hai góc đồng vị bằng nhau
Lời giải chi tiết:
1. Vì MN//BC nên \(\widehat {AMN} = \widehat {ABC}\)( 2 góc đồng vị), mà \(\widehat {ABC} = 60^\circ \)nên \(\widehat {AMN} = 60^\circ \)
Vì \(\widehat {AMN} + \widehat {BMN} = 180^\circ \) (2 góc kề bù)
\(\begin{array}{l} \Rightarrow 60^\circ + \widehat {BMN} = 180^\circ \\ \Rightarrow \widehat {BMN} = 180^\circ - 60^\circ = 120^\circ \end{array}\)
Vì \(\widehat {ANM} + \widehat {MNC} = 180^\circ \)(2 góc kề bù)
\(\begin{array}{l} \Rightarrow \widehat {ANM} + 150^\circ = 180^\circ \\ \Rightarrow \widehat {ANM} = 180^\circ - 150^\circ = 30^\circ \end{array}\)
Vì MN//BC nên \(\widehat {ANM} = \widehat {ACB}\) ( 2 góc đồng vị), mà \(\widehat {ANM} = 30^\circ \)nên \(\widehat {ACB} = 30^\circ \).
2. Vì xx’//yy’ nên \(\widehat {x'AB} = \widehat {ABy}\)( 2 góc so le trong)
Mà zz’\( \bot \) xx’ nên \(\widehat {x'AB} = 90^\circ \)
Do đó, \(\widehat {ABy} = 90^\circ \) nên zz’ vuông góc với yy’.
Bài 9: Xây dựng gia đình văn hóa
Chủ đề 3. Phân tử
Chủ đề 4: Ước mơ
Bài 3. Cội nguồn yêu thương
Bài 16: Quyền tự do tín ngưỡng và tôn giáo
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7