Chuyên đề 3: Ba đường conic và ứng dụng

Câu hỏi mục 2 trang 50, 51

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 3
Luyện tập
Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 3
Luyện tập

HĐ 3

a) Quan sát điểm \(M\left( {x;y} \right)\) thuộc hypebol (H) (Hình 15) và chứng tỏ rằng \(x \le  - a\) hoặc \(x \ge a\)

 

b) Viết phương trình hai đường thẳng PR và QS

Phương pháp giải:

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Hình chữ nhật cơ sở có 4 đỉnh \(P\left( { - a;b} \right),Q\left( {a;b} \right),R\left( {a; - b} \right),S - \left( {a;b} \right).\)

+ Hai đường thẳng PR và QS lần lượt có phương trình \(y =  - \frac{b}{a}x,y = \frac{b}{a}x\) được gọi là hai đường tiệm cận của hypebol (H)

Lời giải chi tiết:

a) Nếu điểm \(M\left( {x;y} \right)\) thuộc hypebol (H) thì \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

Vì \(\frac{{{y^2}}}{{{b^2}}} \ge 0 \Rightarrow \frac{{{x^2}}}{{{a^2}}} \ge \frac{{{y^2}}}{{{b^2}}} + 1 \Rightarrow {x^2} \ge {a^2} \ge \left[ \begin{array}{l}x \ge a\\x \le  - a\end{array} \right.\)

b) Ta có: \(P\left( { - a;b} \right),R\left( {a; - b} \right) \Rightarrow \overrightarrow {PR}  = \left( {2a; - 2b} \right)\)

Chọn \(\left( {b;a} \right)\) là 1 vector pháp tuyến của PR, khi đó phương trình đường thẳng PR là: \(PR:b\left( {x + a} \right) + a\left( {y - b} \right) = 0 \Leftrightarrow bx + ay = 0\) hay \(PR:y =  - \frac{b}{a}x\)

Ta có: \(Q\left( {a;b} \right),S - \left( {a;b} \right) \Rightarrow \overrightarrow {QS}  = \left( { - 2a; - 2b} \right)\)

Chọn \(\left( {b; - a} \right)\) là 1 vector pháp tuyến của QS, khi đó phương trình đường thẳng QS là: \(QS:b\left( {x - a} \right) - a\left( {y - b} \right) = 0 \Leftrightarrow bx - ay = 0\) hay \(QS:y = \frac{b}{a}x\)

Luyện tập

Viết phương trình chính tắc của hypebol có một đỉnh là \({A_2}\left( {5;0} \right)\) và một đường tiệm cận là \(y =  - 3x\)

Phương pháp giải:

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ 2 đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right)\)

+ Hai đường tiệm cận của hypebol (H) lần lượt có phương trình \(y =  - \frac{b}{a}x,y = \frac{b}{a}x\)

Lời giải chi tiết:

+ Ta có hypebol có đỉnh \({A_2}(a;0) = \left( {5;0} \right) \Rightarrow a = 5\)

+ Hypebol có đường tiệm cận là \(y =  - 3x \Rightarrow \frac{b}{a} = 3 \Rightarrow b = 3a = 15\)

Vậy phương trình hypebol là: \(\frac{{{x^2}}}{{{5^2}}} - \frac{{{y^2}}}{{{{15}^2}}} = 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved