SGK Toán 11 - Chân trời sáng tạo tập 2

Trả lời câu hỏi mục 2 trang 43

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Thực hành 2
Thực hành 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Thực hành 2
Thực hành 3

Hoạt động 2

1. Nội dung câu hỏi

Dùng định nghĩa, tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \(x = {x_0}\) với \({x_0} > 0\).

 

2. Phương pháp giải

Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).

 

3. Lời giải chi tiết

Với bất kì \({x_0} > 0\), ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt x  - \sqrt {{x_0}} }}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt x  - \sqrt {{x_0}} } \right)\left( {\sqrt x  + \sqrt {{x_0}} } \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt x  + \sqrt {{x_0}} } \right)}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{\left( {x - {x_0}} \right)\left( {\sqrt x  + \sqrt {{x_0}} } \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{\sqrt x  + \sqrt {{x_0}} }} = \frac{1}{{\sqrt {{x_0}}  + \sqrt {{x_0}} }} = \frac{1}{{2\sqrt {{x_0}} }}\end{array}\)

Vậy \(f'\left( x \right) = {\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\) trên \(\left( {0; + \infty } \right)\).

Thực hành 2

1. Nội dung câu hỏi

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \sqrt x \) tại điểm có hoành độ bằng 4.

 

2. Phương pháp giải

Hệ số góc: \(f'\left( {{x_0}} \right)\).

Phương trình tiếp tuyến: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\).

 

3. Lời giải chi tiết

\({y_0} = \sqrt 4  = 2\)

Ta có: \({\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\) nên tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {4;2} \right)\) có hệ số góc là: \(f'\left( 4 \right) = \frac{1}{{2\sqrt 4 }} = \frac{1}{4}\)

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là:

\(y - 2 = \frac{1}{4}\left( {x - 4} \right) \Leftrightarrow y = \frac{1}{4}x - 1 + 2 \Leftrightarrow y = \frac{1}{4}x + 1\).

Thực hành 3

1. Nội dung câu hỏi

Tìm đạo hàm của các hàm số:

a) \(y = \sqrt[4]{x}\) tại \(x = 1\);     

b) \(y = \frac{1}{x}\) tại \(x =  - \frac{1}{4}\);

 

2. Phương pháp giải

a) Sử dụng công thức \({\left( {{x^\alpha }} \right)^\prime } = \alpha {x^{\alpha  - 1}}\left( {x > 0} \right)\).

b) Sử dụng công thức \({\left( {\frac{1}{x}} \right)^\prime } =  - \frac{1}{{{x^2}}}\left( {x \ne 0} \right)\).

 

3. Lời giải chi tiết

a) \(y' = {\left( {\sqrt[4]{x}} \right)^\prime } = {\left( {{x^{\frac{1}{4}}}} \right)^\prime } = \frac{1}{4}{x^{\frac{1}{4} - 1}} = \frac{1}{4}{x^{ - \frac{3}{4}}} = \frac{1}{{4\sqrt[4]{{{x^3}}}}}\)

\(y'\left( 1 \right) = \frac{1}{{4\sqrt[4]{{{1^3}}}}} = \frac{1}{4}\).

b) \(y' = {\left( {\frac{1}{x}} \right)^\prime } =  - \frac{1}{{{x^2}}}\)

\(y'\left( { - \frac{1}{4}} \right) =  - \frac{1}{{{{\left( { - \frac{1}{4}} \right)}^2}}} =  - 16\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved