Toán 10 tập 1 - Chân trời sáng tạo

Câu hỏi mục 1 trang 61, 62

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ Khám phá 1
Thực hành 1
Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ Khám phá 1
Thực hành 1

HĐ Khám phá 1

Trong mặt phẳng tọa độ Oxy, nửa đường tròn tâm O bán kính \(R = 1\) nằm phía trên trục hoành được gọi là nửa đường tròn đơn vị. Cho trước một góc nhọn \(\alpha ,\)lấy điểm M trên nửa đường tròn đơn vị sao cho \(\widehat {xOM} = \alpha .\) Giả sử điểm M có tọa độ \(({x_0};{y_0}).\) Trong tam giác vuông OHM, áp dụng cách tính các tỉ số lượng giác của một góc nhọn đã học ở lớp 9, chứng tỏ rằng:

\(\sin \alpha  = {y_0};\;\cos \alpha  = {x_0};\;\tan \alpha  = \frac{{{y_0}}}{{{x_0}}};\;\cot \alpha  = \frac{{{x_0}}}{{{y_0}}}.\)

Phương pháp giải:

Tam giác vuông OHM có \(\alpha  = \widehat {xOM}\)

\(\sin \alpha  = \frac{{MH}}{{OM}};\;\cos \alpha  = \frac{{OH}}{{OM}};\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}.\)

Lời giải chi tiết:

Ta có: tam giác vuông OHM vuông tại H và \(\alpha  = \widehat {xOM}\)

Do đó: \(\sin \alpha  = \frac{{MH}}{{OM}};\;\cos \alpha  = \frac{{OH}}{{OM}}.\)

Mà \(MH = {y_0};OH = {x_0};OM = 1.\)

\( \Rightarrow \sin \alpha  = \frac{{{y_0}}}{1} = {y_0};\;\cos \alpha  = \frac{{{x_0}}}{1} = {x_0}\;.\)

\( \Rightarrow \tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{{y_0}}}{{{x_0}}};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{{x_0}}}{{{y_0}}}.\)

Thực hành 1

Tìm các giá trị lượng giác của góc \({135^o}\)

Phương pháp giải:

Gọi M là điểm trên nửa đường tròn đơn vị sao cho \(\widehat {xOM} = {135^o}\)

Khi đó hoành độ và tung độ của điểm M lần lượt là các giá trị \(\cos {135^o},\;\sin {135^o}\)

Từ đó suy ra\(\;\tan {135^o} = \frac{{\sin {{135}^o}}}{{\cos {{135}^o}}},\;\;\cot {135^o} = \frac{{\cos {{135}^o}}}{{\sin {{135}^o}}}.\)

Lời giải chi tiết:

Lấy điểm M trên nửa đường tròn đơn vị sao cho \(\widehat {xOM} = {135^o}\), H là hình chiếu vuông góc của M trên Oy.

 

Ta có: \(\widehat {MOy} = {135^o} - {90^o} = {45^o}\).

Tam giác OMH vuông cân tại H nên \(OH = MH = \frac{{OM}}{{\sqrt 2 }} = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}.\)

Vậy tọa độ điểm M là \(\left( { - \frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2}} \right).\)

Vậy theo định nghĩa ta có:

 \(\begin{array}{l}\;\sin {135^o} = \frac{{\sqrt 2 }}{2};\;\;\cos {135^o} =  - \frac{{\sqrt 2 }}{2};\\\;\tan {135^o} =  - 1;\;\;\cot {135^o} =  - 1.\end{array}\)

Chú ý

Ta có thể sử dụng máy tính cầm tay để tính các giá trị lượng giác góc \({135^o}\)

Với các loại máy tính fx-570 ES (VN hoặc VN PLUS) ta làm như sau:

Bấm phím “SHIFT” “MODE” rồi bấm phím “3” (để chọn đơn vị độ)

Tính \(\sin {135^o}\), bấm phím:  sin  1  3  5  \(^o\)’’’  = ta được kết quả là \(\frac{{\sqrt 2 }}{2}\)

Tính \(\cos {135^o}\),bấm phím:  cos  1  3  5  \(^o\)’’’  = ta được kết quả là \(\frac{{ - \sqrt 2 }}{2}\)

Tính \(\tan {135^o}\), bấm phím:  tan  1  3  5  \(^o\)’’’  = ta được kết quả là \( - 1\)

(Để tính \(\cot {135^o}\), ta tính \(1:\tan {135^o}\))

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved