Chuyên đề 3: Ba đường conic và ứng dụng

Câu hỏi mục 1 trang 39, 40

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 1
HĐ 2
Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 1
HĐ 2

HĐ 1

Trong mặt phẳng tọa độ \(Oxy\), ta xét Elip \(\left( E \right)\) có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\) (Hình 2)

 

a) Tìm tọa độ của hai tiêu điểm \({F_1},{F_2}\) của \(\left( E \right)\)

b) \(\left( E \right)\) cắt trục \(Ox\) tịa các điểm \({A_1},{A_2}\) và cắt trục \(Oy\) tịa các điểm \({B_1},{B_2}\). Tìm độ dài các đoạn thẳng \(O{A_2},O{B_2}\)

Phương pháp giải:

Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)

+ 4 đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right).\)

Lời giải chi tiết:

Elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\) có 4 đỉnh \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right).\)

\( \Rightarrow O{A_2} = a;O{B_2} = b\)

HĐ 2

Trong mặt phẳng tọa độ \(Oxy\), ta xét Elip \(\left( E \right)\) có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\)

Cho điểm \(M\left( {x;y} \right)\) nẳm trên \(\left( E \right)\) (Hình 3)

 

a) Gọi \({M_1}\) là điểm đối xứng của M qua trục Ox. Tìm tọa độ của điểm \({M_1}\). Điểm \({M_1}\) có nằm trên \(\left( E \right)\) hay không? Tại sao?

b) Gọi \({M_2}\) là điểm đối xứng của M qua trục Oy. Tìm tọa độ của điểm \({M_2}\). Điểm \({M_2}\) có nằm trên \(\left( E \right)\) hay không? Tại sao?

c) Gọi \({M_3}\) là điểm đối xứng của M qua gốc O. Tìm tọa độ của điểm \({M_3}\). Điểm \({M_3}\) có nằm trên \(\left( E \right)\) hay không? Tại sao?

Lời giải chi tiết:

a) Điểm \({M_1}\) là điểm đối xứng của M qua trục Ox, nên \({M_1}\left( {x; - y} \right)\)

\({M_1}\left( {x; - y} \right)\) thuộc Elip vì \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{{( - y)}^2}}}{{{b^2}}} = \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

b) Điểm \({M_2}\) là điểm đối xứng của M qua trục Oy, nên \({M_2}\left( { - x;y} \right)\)

\({M_2}\left( { - x;y} \right)\) thuộc Elip vì \(\frac{{{{( - x)}^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

c) Điểm \({M_3}\) là điểm đối xứng của M qua gốc O, nên \({M_3}\left( { - x; - y} \right)\)

\({M_3}\left( { - x; - y} \right)\) thuộc Elip vì \(\frac{{{{( - x)}^2}}}{{{a^2}}} + \frac{{{{( - y)}^2}}}{{{b^2}}} = \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved