Bài 62. Phân số
Bài 63. Phân số và phép chia số tự nhiên
Bài 64. Luyện tập
Bài 65. Phân số bằng nhau
Bài 66. Rút gọn phân số
Bài 67. Quy đồng mẫu số các phân số
Bài 68. Quy đồng mẫu số các phân số (tiếp theo)
Bài 69. Luyện tập
Bài 70. So sánh hai phân số cùng mẫu số
Bài 71. So sánh hai phân số khác mẫu số
Bài 72. Em ôn lại những gì đã học
Bài 73. Phép cộng phân số
Bài 74. Phép cộng phân số (tiếp theo)
Bài 75. Phép trừ phân số
Bài 76. Phép trừ phân số (tiếp theo)
Bài 77. Em ôn lại những gì đã học
Bài 78. Phép nhân phân số
Bài 79. Luyện tập
Bài 80. Tìm phân số của một số
Bài 81. Phép chia phân số
Bài 82. Luyện tập
Bài 83. Em ôn lại những gì đã học
Bài 84. Em ôn lại những gì đã học
Bài 85. Em đã học được những gì
Bài 86. Hình thoi
Bài 87. Diện tích hình thoi
Bài 88. Em ôn lại những gì đã học
Bài 89. Giới thiệu về tỉ số
Bài 90. Tìm hai số biết tổng và tỉ số của hai số đó
Bài 91. Em ôn lại những gì đã học
Bài 92. Em ôn lại những gì đã học
Bài 93. Tìm hai số biết hiệu và tỉ số của hai số đó
Bài 94. Em ôn lại những gì đã học
Bài 95. Em ôn lại những gì đã học
Bài 96. Tỉ lệ bản đồ
Bài 97. Ứng dụng của tỉ lệ bản đồ
Bài 98. Thực hành
Bài 99. Ôn tập về số tự nhiên
Bài 100. Ôn tập về các phép tính với số tự nhiên
Bài 101. Ôn tập về biểu đồ
Bài 102. Ôn tập về phân số
Bài 103. Ôn tập về các phép tính với phân số
Bài 104. Ôn tập về các phép tính với phân số (tiếp theo)
Bài 105. Ôn tập về đại lượng
Bài 106. Ôn tập về đại lượng (tiếp theo)
Bài 107. Ôn tập về hình học
Bài 108. Ôn tập về tìm số trung bình cộng
Bài 109. Ôn tập về tìm hai số biết tổng và hiệu của hai số đó
Bài 110. Ôn tập về tìm hai số biết tổng (hiệu) và tỉ số của hai số đó
Bài 111. Em ôn lại những gì đã học
Bài 112. Em đã học được những gì ?
Câu 1
Chơi trò chơi “Ghép thẻ” :
Ghép các thẻ tích hợp để được các phép tính đúng, chẳng hạn :
Ghi lại các phép tính nhóm em ghép được.
Nhóm nào ghép được nhiều phép tính đúng nhất là nhóm thắng cuộc.
Phương pháp giải:
- Các em tự tạo thẻ và chơi trò chơi theo nhóm.
- Áp dụng các quy tắc cộng (hoặc trừ) hai phân số :
+) Muốn cộng (hoặc trừ) hai phân số có cùng mẫu số, ta cộng (hoặc trừ) hai tử số với nhau và giữ nguyên mẫu số.
+) Muốn cộng (hoặc trừ) hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi cộng (hoặc trừ) hai phân số đó.
Lời giải chi tiết:
Ví dụ :
\(\dfrac{1}{4} + \dfrac{1}{5} = \dfrac{9}{{20}}\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{9}{{20}} - \dfrac{1}{4} = \dfrac{1}{5}\,;\,\) \(\dfrac{9}{{20}} - \dfrac{1}{5} = \dfrac{1}{4}\)
\(\dfrac{1}{2} + \dfrac{1}{6} = \dfrac{2}{3}\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{2}{3} - \dfrac{1}{2} = \dfrac{1}{6}\,\,;\) \(\dfrac{2}{3} - \dfrac{1}{6} = \dfrac{1}{2}.\)
\(\dfrac{3}{4} + \dfrac{1}{{12}} = \dfrac{5}{6}\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\dfrac{5}{6} - \dfrac{3}{4} = \dfrac{1}{{12}}\,\,;\) \(\dfrac{5}{6} - \dfrac{1}{{12}} = \dfrac{3}{4}\,.\)
Câu 2
Tính:
\(a)\;\dfrac{{10}}{3} - \dfrac{8}{3};\,\,\,\,\,\,\,\dfrac{{11}}{4} - \dfrac{5}{4};\,\,\,\,\,\,\,\)\(\dfrac{{32}}{{17}} + \dfrac{{21}}{{17}}\)
\(b)\;\dfrac{{5}}{6} + \dfrac{7}{8};\,\,\,\,\,\,\,\dfrac{{3}}{7} - \dfrac{5}{14};\,\,\,\,\,\,\,\)\(\dfrac{{7}}{{4}} - \dfrac{{3}}{{5}}\)
Phương pháp giải:
Áp dụng các quy tắc cộng (hoặc trừ) hai phân số :
- Muốn cộng (hoặc trừ) hai phân số có cùng mẫu số, ta cộng (hoặc trừ) hai tử số với nhau và giữ nguyên mẫu số.
- Muốn cộng (hoặc trừ) hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi cộng (hoặc trừ) hai phân số đó.
Lời giải chi tiết:
\(\begin{array}{*{20}{l}}
{a)\;\dfrac{{10}}{3} - \dfrac{8}{3} = \dfrac{{10 - 8}}{3} = \dfrac{2}{3}}\\
{\dfrac{{11}}{4} - \dfrac{5}{4} = \dfrac{{11 - 5}}{4} = \dfrac{6}{4} = \dfrac{3}{2}}\\
{\dfrac{{32}}{{17}} + \dfrac{{21}}{{17}} = \dfrac{{32 + 21}}{{17}} = \dfrac{{53}}{{17}}}
\end{array}\)
\(\begin{array}{*{20}{l}}
{b){\mkern 1mu} {\mkern 1mu} \dfrac{5}{6} + \dfrac{7}{8} = \dfrac{{20}}{{24}} + \dfrac{{21}}{{24}} = \dfrac{{41}}{{24}}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \dfrac{3}{7} - \dfrac{5}{{14}} = \dfrac{6}{{14}} - \dfrac{5}{{14}} = \dfrac{1}{{14}}}\\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \dfrac{7}{4} - \dfrac{3}{5} = \dfrac{{35}}{{20}} - \dfrac{{12}}{{20}} = \dfrac{{23}}{{20}}}
\end{array}\)
Câu 3
Tính:
\(a)\;4 + \dfrac{1}{4};\,\,\,\,\,\) \(b)\;\dfrac{7}{6} - 1;\,\,\,\,\,\) \(c)\;7 - \dfrac{8}{5};\,\,\,\,\,\) \(d)\;\dfrac{3}{4} + 5\)
Phương pháp giải:
Viết số tự nhiên dưới dạng phân số có mẫu số là \(1\) , sau đó thực hiện phép cộng (hoặc phép trừ) hai phân số như thông thường.
Lời giải chi tiết:
\(\begin{array}{*{20}{l}}
{a)\,4 + \dfrac{1}{4} = \dfrac{4}{1} + \dfrac{1}{4} = \dfrac{16}{4} + \dfrac{1}{4} = \dfrac{17}{4}}\\
{b)\,\dfrac{7}{6} - 1 = \dfrac{7}{6} - \dfrac{1}{1} = \dfrac{7}{6} - \dfrac{6}{6} = \dfrac{1}{6}}\\
{c)\,7 - \dfrac{8}{5} = \dfrac{7}{1} - \dfrac{8}{5} = \dfrac{{35}}{5} - \dfrac{8}{5} = \dfrac{{27}}{5}}\\
{d)\,\dfrac{3}{4} + 5 = \dfrac{3}{4} + \dfrac{5}{1} = \dfrac{3}{4} + \dfrac{{20}}{4} = \dfrac{{23}}{4}}
\end{array}\)
Câu 4
Tìm \(x\):
\(a)\; x + \dfrac{4}{5} = \dfrac{7}{5}\) \(b)\;x - \dfrac{4}{3} = \dfrac{7}{4}\)
\(c)\; \dfrac{7}{4} - x = \dfrac{3}{{14}}\)
Phương pháp giải:
Áp dụng các quy tắc :
- Muốn tìm số hạng chưa biết ta lấy tổng trừ đi số hạng đã biết.
- Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ.
- Muốn tìm số trừ ta lấy số bị trừ trừ đi số trừ.
Lời giải chi tiết:
\(\begin{array}{*{20}{l}}
{a)\;x + \dfrac{4}{5} = \dfrac{7}{5}}\\
{\;\;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x = \dfrac{7}{5} - \dfrac{4}{5}}\\
{\;\;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x = \dfrac{3}{5}}\\
{b)\;x - \dfrac{4}{3} = \dfrac{7}{4}}\\
{\;\;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x = \dfrac{7}{4} + \dfrac{4}{3}}\\
{\;\;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x = \dfrac{{37}}{{12}}}\\
{c)\;\dfrac{4}{7} - x = \dfrac{3}{{14}}}\\
{\;\;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x = \dfrac{4}{7} - \dfrac{3}{{14}}}\\
{\;\;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} x = \dfrac{5}{{14}}}
\end{array}\)
Câu 5
Có một đàn trâu, bò và ngựa đang ăn cỏ. Số trâu chiếm \(\dfrac{1}{3}\) đàn, số ngựa chiếm \(\dfrac{1}{2}\) đàn. Hỏi số bò chiếm mấy phần của cả đàn ?
Phương pháp giải:
- Tìm phân số chỉ số trâu và số ngựa so với cả đàn.
- Coi cả đàn là \(1\) đơn vị, để tìm phân số chỉ số bò so với cả đàn ta lấy \(1) trừ đi phân số chỉ số trâu và số ngựa so với cả đàn.
Lời giải chi tiết:
Số trâu và số ngựa chiếm số phần của cả đàn là :
\(\dfrac{1}{3} + \dfrac{1}{2} = \dfrac{5}{6}\) (đàn)
Số bò chiếm số phần cả đàn là :
\(1 - \dfrac{5}{6} = \dfrac{1}{6}\) (đàn)
Đáp số: \(\dfrac{1}{6}\) đàn.
Stop and Check 2A
Đề thi giữa kì 2
Review 3
Chủ đề 2. Dấu hiệu chia hết cho 2, 3, 5, 9
Chủ đề 5: Con người và sức khỏe
SGK Toán Lớp 4
SGK Toán 4 - Kết nối tri thức với cuộc sống
STK - Cùng em phát triển năng lực Toán 4
Bài giảng ôn luyện kiến thức môn Toán lớp 4
SGK Toán 4 - Chân trời sáng tạo
SGK Toán 4 - Cánh Diều
VBT Toán 4 - Chân trời sáng tạo
VBT Toán 4 - Kết nối tri thức với cuộc sống
VBT Toán 4 - Cánh Diều
Vở bài tập Toán Lớp 4
Bài tập cuối tuần Toán Lớp 4
Cùng em học toán Lớp 4
Ôn tập hè Toán Lớp 4
Đề thi, đề kiểm tra Toán Lớp 4
Bài tập phát triển năng lực Toán Lớp 4