Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác
Bài tập cuối chương IX
Bài 32. Quan hệ giữa đường vuông góc và đường xiên
Luyện tập chung trang 70
Luyện tập chung trang 82
Bài 33. Quan hệ giữa ba cạnh của một tam giác
Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
HĐ
HĐ
Cho điểm A không nằm trên đường thẳng d.
a) Hãy vẽ đường vuông góc AH và một đường xiên AM từ A đến d.
b) Em hãy giải thích vì sao AH < AM
Phương pháp giải:
Áp dụng: Trong 1 tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.
Lời giải chi tiết:
a)
b) Trong tam giác AHM có \(\widehat {AHM} = 90^\circ \) nên là góc lớn nhất trong tam giác.
Cạnh AM đối diện với góc AHM nên là cạnh lớn nhất ( trong 1 tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất)
\( \Rightarrow AM > AH\)
Vậy AH < AM
Luyện tập
Luyện tập
Cho hình vuông ABCD có độ dài cạnh bằng 2 cm, M là một điểm trên cạnh BC như Hình 9.10
a) Hãy chỉ ra các đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng BC.
b) So sánh hai đoạn thẳng AB và AM.
c) Tìm khoảng cách từ điểm C đến đường thẳng AB.
Phương pháp giải:
Sử dụng định lí: Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.
Lời giải chi tiết:
a) Đường vuông góc kẻ từ A đến BC là: AB
Đường xiên kẻ từ A đến BC là: AM
b) AB < AM (Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.)
c) Vì CB \( \bot \) AB nên khoảng cách từ C đến AB là độ dài CB = 2 cm
Vận dụng
Vận dụng
Tình huống mở đầu
Bạn Nam tập bơi ở một bể bơi hình chữ nhật, trong đó có ba đường bơi OA, OB, OC. Biết rằng OA vuông góc với cạnh của bể bơi (H.9.8)
Nếu xuất phát từ điểm O và bơi cùng tốc độ, để bơi sang bờ bên kia nhanh nhất thì bạn Nam nên chọn đường bơi nào?
Phương pháp giải:
Sử dụng định lí: Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.
Lời giải chi tiết:
Trong các đường xiên và đường vuông góc kẻ từ O đến bờ bên kia của bể bơi thì OA là đường vuôn góc nên ngắn nhất ( Định lí)
Thử thách nhỏ
Thử thách nhỏ
a) Quan sát hình 9.11, ta thấy khi M thay đổi trên d, M càng xa H thì AM càng lớn lên, tức là nếu HM < HN thì AM < AN. Hãy chứng minh khẳng định này nhờ quan hệ giữa góc và cạnh đối diện trong tam giác AMN.
b) Xét hình vuông ABCD và một điểm M tùy ý nằm trên các cạnh của hình vuông. Hỏi với vị trí nào của M thì AM lớn nhất? Vì sao?
Phương pháp giải:
Sử dụng định lí: Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất.
Lời giải chi tiết:
+) TH1:
M nằm giữa H và N:
Vì góc AMN là góc ngoài tại đỉnh M của tam giác AHM nên hay là góc tù.
Xét tam giác AMN có là góc tù nên là góc lớn nhất trong tam giác. Cạnh AN đối diện với nên là cạnh lớn nhất trong tam giác ( định lí)
Vậy AM < AN
+) TH2:
H nằm giữa M và N:
Lấy điểm M’ trên d sao cho HM’ = HM. Ta được AH là đường trung trực của đoạn thẳng MM’ nên AM = AM’ ( tính chất đường trung trực của đoạn thẳng)
Hơn nữa, AM’ < AN ( theo trường hợp 1)
AM < AN
Vậy AM < AN.
b)
Theo câu a, khi M thay đổi trên BC, M càng xa B thì AM càng lớn. Khi M trùng C thì M xa B nhất nên khi đó AM là lớn nhất.
Đề thi giữa kì 2
Review 4
Đề thi học kì 1
Chủ đề 3: Đạo đức, pháp luật và văn hóa trong môi trường số
Vở thực hành Toán 7 - Tập 1
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7