SBT Toán 11 - Chân trời sáng tạo tập 2

Trả lời câu hỏi - Mục câu hỏi trắc nghiệm trang 44

Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 1
Câu 2
Câu 3
Câu 4
Câu 5
Câu 6
Câu 7
Câu 8
Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 1
Câu 2
Câu 3
Câu 4
Câu 5
Câu 6
Câu 7
Câu 8

Câu 1

1. Nội dung câu hỏi

Cho hàm số \(y = {x^3} + 3{x^2} - 2\). Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left( { - 1; - 6} \right)\) có hệ số góc bằng:

A. 18

B. \( - 3\)

C. 7

D. 9


2. Phương pháp giải

Sử dụng kiến thức về ý nghĩa hình học của đạo hàm để tìm hệ số góc của tiếp tuyến:

Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\).

Tiếp tuyến \({M_0}T\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)

 

3. Lời giải chi tiết 

Ta có: \(y' = 3{x^2} + 6x\)

Hệ số góc của tiếp tuyến với đồ thị tại điểm \(M\left( { - 1; - 6} \right)\) là: \(y'\left( { - 1} \right) = 3.{\left( { - 1} \right)^2} + 6.\left( { - 1} \right) = 3 - 6 =  - 3\)

Chọn B

Câu 2

1. Nội dung câu hỏi

Hàm số \(y = {x^3} - 3x + 1\) có đạo hàm tại \(x =  - 1\) bằng

A. 0

B. 6

C. \( - 6\)

D. \( - 1\)


2. Phương pháp giải

Sử dụng kiến thức về các quy tắc tính đạo hàm để tính: \(\left( {u \pm v} \right)' = u' \pm v',\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha  - 1}}\left( {x > 0} \right),c' = 0\) với c là hằng số. 

 

3. Lời giải chi tiết 

\(y' = \left( {{x^3} - 3x + 1} \right)' = 3{x^2} - 3\) nên \(y'\left( { - 1} \right) = 3.{\left( { - 1} \right)^2} - 3 = 0\)

Chọn A.

Câu 3

1. Nội dung câu hỏi

Cho hai hàm số \(f\left( x \right) = 3{x^3} - 3{x^2} + 6x - 1\) và \(g\left( x \right) = {x^3} + {x^2} - 2\). Bất phương trình \(f''\left( x \right) - f'\left( x \right) + g'\left( x \right) - 8 \ge 0\) có tập nghiệm là

A. \(\left( {1;\frac{{10}}{3}} \right)\)

B. \(\left( { - \infty ;1} \right] \cup \left[ {\frac{{10}}{3}; + \infty } \right)\)

C. \(\left[ {1;\frac{{10}}{3}} \right]\)

D. \(\left( { - \infty ;1} \right) \cup \left( {\frac{{10}}{3}; + \infty } \right)\)


2. Phương pháp giải

+ Sử dụng kiến thức về đạo hàm cấp hai của hàm số: Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại mọi \(x \in \left( {a;b} \right)\) thì ta có hàm số \(y' = f'\left( x \right)\) xác định trên \(\left( {a;b} \right)\). Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x và kí hiệu là \(y''\) hoặc \(f''\left( x \right)\).

+ Sử dụng kiến thức về các quy tắc tính đạo hàm để tính: \(\left( {u \pm v} \right)' = u' \pm v',\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha  - 1}}\left( {x > 0} \right),c' = 0\) với c là hằng số.

 

3. Lời giải chi tiết 

\(f'\left( x \right) = 9{x^2} - 6x + 6,f''\left( x \right) = 18x - 6,g'\left( x \right) = 3{x^2} + 2x\)

Do đó, \(f''\left( x \right) - f'\left( x \right) + g'\left( x \right) - 8 \ge 0\)

\( \Leftrightarrow 18x - 6 - 9{x^2} + 6x - 6 + 3{x^2} + 2x - 8 \ge 0\)

\( \Leftrightarrow  - 6{x^2} + 26x - 20 \ge 0 \Leftrightarrow 3{x^2} - 13x + 10 \le 0\)

\( \Leftrightarrow \left( {3x - 10} \right)\left( {x - 1} \right) \le 0 \Leftrightarrow 1 \le x \le \frac{{10}}{3}\)

Vậy tập nghiệm của bất phương trình là: \(S = \left[ {1;\frac{{10}}{3}} \right]\)

Chọn C

Câu 4

1. Nội dung câu hỏi

Hàm số \(y = \frac{{2x - 1}}{{3x + 2}}\) có đạo hàm là

A. \(y' =  - \frac{1}{{{{\left( {3x + 2} \right)}^2}}}\)

B. \(y' =  - \frac{7}{{{{\left( {3x + 2} \right)}^2}}}\)

C. \(y' = \frac{1}{{{{\left( {3x + 2} \right)}^2}}}\)

D. \(y' = \frac{7}{{{{\left( {3x + 2} \right)}^2}}}\)


2. Phương pháp giải

Sử dụng kiến thức về các quy tắc tính đạo hàm để tính: \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\)

 

3. Lời giải chi tiết 

\(y' = {\left( {\frac{{2x - 1}}{{3x + 2}}} \right)'} = \frac{{\left( {2x - 1} \right)'\left( {3x + 2} \right) - \left( {2x - 1} \right)\left( {3x + 2} \right)'}}{{{{\left( {3x + 2} \right)}^2}}} = \frac{{2\left( {3x + 2} \right) - 3\left( {2x - 1} \right)}}{{{{\left( {3x + 2} \right)}^2}}}\)

\( = \frac{{6x + 4 - 6x + 3}}{{{{\left( {3x + 2} \right)}^2}}} = \frac{7}{{{{\left( {3x + 2} \right)}^2}}}\)

Chọn D

Câu 5

1. Nội dung câu hỏi

Hàm số \(y = \frac{{x - 1}}{{x + 1}}\) có đạo hàm cấp hai tại \(x = 1\) là

A. \(y''\left( 1 \right) = \frac{1}{4}\)

B. \(y''\left( 1 \right) =  - \frac{1}{4}\)

C. \(y''\left( 1 \right) = \frac{1}{2}\)

D. \(y''\left( 1 \right) =  - \frac{1}{2}\)


2. Phương pháp giải

+ Sử dụng kiến thức về đạo hàm cấp hai của hàm số: Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại mọi \(x \in \left( {a;b} \right)\) thì ta có hàm số \(y' = f'\left( x \right)\) xác định trên \(\left( {a;b} \right)\). Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x và kí hiệu là \(y''\) hoặc \(f''\left( x \right)\).

+ Sử dụng một số quy tắc tính đạo hàm: \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\)

 

3. Lời giải chi tiết 

\(y' = {\left( {\frac{{x - 1}}{{x + 1}}} \right)'} = \frac{{\left( {x - 1} \right)'\left( {x + 1} \right) - \left( {x - 1} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{x + 1 - x + 1}}{{{{\left( {x + 1} \right)}^2}}} = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\)

\(y'' = {\left[ {\frac{2}{{{{\left( {x + 1} \right)}^2}}}} \right]'} = \left[ {2{{\left( {x + 1} \right)}^{ - 2}}} \right]' = - 4{\left( {x + 1} \right)^{ - 3}}\left( {x + 1} \right)' = \frac{{ - 4}}{{{{\left( {x + 1} \right)}^3}}}\)

Do đó, \(y''\left( 1 \right) = \frac{{ - 4}}{{{{\left( {1 + 1} \right)}^3}}} = - \frac{1}{2}\)

Chọn D

Câu 6

1. Nội dung câu hỏi

Hàm số \(y = {3^{{x^2} + 1}}\) có đạo hàm là

A. \(\left( {{x^2} + 1} \right){3^{{x^2}}}\)

B. \(\left( {{x^2} + 1} \right){3^{{x^2} + 1}}\ln 3\)

C. \(2x{3^{{x^2} + 1}}\ln 3\)

D. \({3^{{x^2} + 1}}\)


2. Phương pháp giải

+ Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).

+ Sử dụng kiến thức về đạo hàm của hàm số để tính: \({\left\{ {{{\left[ {u\left( x \right)} \right]}^\alpha }} \right\}'} = \alpha {\left[ {u\left( x \right)} \right]^{\alpha - 1}}\left[ {u\left( x \right)} \right]'\), \(\left( {{a^{u\left( x \right)}}} \right)' = \left( {u\left( x \right)} \right)'{a^{u\left( x \right)}}\ln a\left( {a > 0,a \ne 1} \right)\)

 

3. Lời giải chi tiết 

\(y' = {\left( {{3^{{x^2} + 1}}} \right)'} = \left( {{x^2} + 1} \right)'{3^{{x^2} + 1}}\ln 3 = 2x{.3^{{x^2} + 1}}\ln 3\)

Chọn C

Câu 7

1. Nội dung câu hỏi

Hàm số \(y = \ln \left( {\cos x} \right)\) có đạo hàm là

A. \(\frac{1}{{\cos x}}\)

B. \( - \tan x\)

C. \(\tan x\)

D. \(\cot x\)


2. Phương pháp giải

+ Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).

+ Sử dụng kiến thức về đạo hàm của hàm số để tính: \(\left( {\ln u\left( x \right)} \right)' = \frac{{u'\left( x \right)}}{{u\left( x \right)}}\left( {u\left( x \right) > 0} \right)\)

 

3. Lời giải chi tiết 

\(y' = {\left[ {\ln \left( {\cos x} \right)} \right]'} = \frac{{\left( {\cos x} \right)'}}{{\cos x}} = \frac{{ - \sin x}}{{\cos x}} = - \tan x\)

Chọn B

Câu 8

1. Nội dung câu hỏi

Hàm số \(f\left( x \right) = {e^{\sqrt {{x^2} + 4} }}\) có đạo hàm tại \(x = 1\) bằng

A. \(f'\left( 1 \right) = {e^{\sqrt 5 }}\)

B. \(f'\left( 1 \right) = 2{e^{\sqrt 5 }}\)

C. \(f'\left( 1 \right) = \frac{{{e^{\sqrt 5 }}}}{{\sqrt 5 }}\)

D. \(f'\left( 1 \right) = \frac{{{e^{\sqrt 5 }}}}{{2\sqrt 5 }}\)


2. Phương pháp giải

+ Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).

+ Sử dụng kiến thức về đạo hàm của hàm số để tính: \(\left( {{e^{u\left( x \right)}}} \right)' = \left( {u\left( x \right)} \right)'{e^{u\left( x \right)}}\)

 

3. Lời giải chi tiết 

\(f'\left( x \right) = {\left( {{e^{\sqrt {{x^2} + 4} }}} \right)'} = \left( {\sqrt {{x^2} + 4} } \right)'.{e^{\sqrt {{x^2} + 4} }} = \frac{{{{\left( {{x^2} + 4} \right)}'}}}{{2\sqrt {{x^2} + 4} }}.{e^{\sqrt {{x^2} + 4} }} = \frac{{2x.{e^{\sqrt {{x^2} + 4} }}}}{{2\sqrt {{x^2} + 4} }} = \frac{{x.{e^{\sqrt {{x^2} + 4} }}}}{{\sqrt {{x^2} + 4} }}\)

Do đó, \(f'\left( 1 \right) = \frac{{1.{e^{\sqrt {{1^2} + 4} }}}}{{\sqrt {{1^2} + 4} }} = \frac{{{e^{\sqrt 5 }}}}{{\sqrt 5 }}\)

Chọn C

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved