Chọn phương án đúng trong mỗi câu sau:
Câu 1
1. Nội dung câu hỏi
Khi thu gọn đơn thức \(3x{y^5}\left( { - \frac{2}{3}{x^3}{y^2}z} \right)\), ta được đơn thức
A. \(2{x^2}{y^3}z\)
B. \( - 2{x^4}{y^7}z\)
C. \( - 2{x^3}{y^6}z\)
D. \( - \frac{2}{9}{x^4}{y^7}z\)
2. Phương pháp giải
Muốn nhân đơn thức với đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. Sau đó, nhóm các hạng tử đồng dạng để thu gọn đa thức.
3. Lời giải chi tiết
Ta có \(3x{y^5}\left( { - \frac{2}{3}{x^3}{y^2}z} \right). = \left( {3.\frac{{ - 2}}{3}} \right).x.{x^3}.{y^5}.{y^2}z = - 2{x^4}{y^7}z\).
Chọn đáp án B.
Câu 2
1. Nội dung câu hỏi
Trong các đơn thức \(M = 2xy{z^2}\); \(N = - 0,2{y^2}z\); \(P = - x{z^2}\); \(Q = 3,5y{z^2}\), đơn thức đồng dạng với đơn thức \(y{z^2}\) là:
A. M.
B. N.
C. P.
D. Q.
2. Phương pháp giải
Các đơn thức đồng dạng là các đơn thức với hệ số khác 0 và có phần biến giống nhau.
3. Lời giải chi tiết
Đơn thức đồng dạng với đơn thức \(y{z^2}\) là \(Q = 3,5y{z^2}\) vì chúng đều có phần biến là\(y{z^2}\).
Chọn đáp án D.
Câu 3
1. Nội dung câu hỏi
Bậc của đa thức \(7{x^5} + 5{x^4}{y^3} - 2{x^3}{y^3} - 5{x^4}{y^3} + 2,5{x^3}{y^3} - 7{y^5}\) là
A. 4
B. 5.
C. 6.
D.7.
2. Phương pháp giải
Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.
3. Lời giải chi tiết
Trước hết ta rút gọn đa thức
\(7{x^5} + 5{x^4}{y^3} - 2{x^3}{y^3} - 5{x^4}{y^3} + 2,5{x^3}{y^3} - 7{y^5}\)
\( = \left( {7{x^5} - 7{x^5}} \right) + \left( {5{x^4}{y^3} - 5{x^4}{y^3}} \right) + \left( { - 2{x^3}{y^3} + 2,5{x^3}{y^3}} \right)\)
\( = 0,5{x^3}{y^3}\)
Đơn thức \(0,5{x^3}{y^3}\) có bậc là 6.
Vậy đa thức đã cho có bậc 6.
Chọn đáp án C.
Câu 4
1. Nội dung câu hỏi
Khi cộng hai đơn thức \(\left( {1 + \sqrt 5 } \right){x^2}{y^3}\) và \(\left( {1 - \sqrt 5 } \right){x^2}{y^3}\) ta được đơn thức
A. \({x^2}{y^3}\).
B. \(2{x^2}{y^3}\).
C. \(2\sqrt 5 {x^2}{y^3}\).
D. \( - \sqrt 5 {x^2}{y^3}\).
2. Phương pháp giải
Vận dụng tính chất phân phối của phép nhân đối với phép cộng: \(a.b + c.b = \left( {a + c} \right).b\)
3. Lời giải chi tiết
Ta thực hiện cộng hai đơn thức
\(\left( {1 + \sqrt 5 } \right){x^2}{y^3} + \left( {1 - \sqrt 5 } \right){x^2}{y^3} = \left( {1 + \sqrt 5 + 1 - \sqrt 5 } \right){x^2}{y^3} = 2{x^2}{y^3}\).
Chọn đáp án B.
Câu 5
1. Nội dung câu hỏi
Kết quả của phép cộng hai đơn thức \(2x{y^2}z\) và \( - 0,2{x^2}yz\) là
A. Một đơn thức.
B. Không xác định.
C. Một đa thức.
D. Một số.
2. Phương pháp giải
Thực hiện cộng hai đơn thức.
3. Lời giải chi tiết
Ta thực hiện phép cộng
\(2x{y^2}z + \left( { - 0,2{x^2}yz} \right) = 2x{y^2}z - 0,2{x^2}yz\).
Kết quả \(2x{y^2}z - 0,2{x^2}yz\) là một đa thức.
Chọn đáp án C.
Câu 6
1. Nội dung câu hỏi
Cho hai đa thức A và B có cùng bậc 4. Gọi C là tổng của A và B. Khi đó:
A. C là đa thức bậc 4
B. C là đa thức có bậc lớn hơn 4.
C. C là đa thức có bậc nhỏ hơn 4.
D. C là đa thức có bậc không lớn hơn 4.
2. Phương pháp giải
Tổng của hai đa thức cùng bậc là một đa thức có bậc không lớn hơn bậc của hai đa thức đó.
3. Lời giải chi tiết
Tổng C của hai đa thức A và B cùng có bậc 4 là đa thức bậc 4 hoặc nhỏ hơn 4, không thể lớn hơn 4.
Chọn đáp án D.
Câu 7
1. Nội dung câu hỏi
Tích của một đa thức bậc 3 và một đa thức bậc 2 là một đa thức
A. bậc 5.
B. bậc 6.
C. bậc nhỏ hơn 5.
D. bậc lớn hơn 6.
2. Phương pháp giải
Tích của hai đa thức là một đa thức có bậc bằng tổng bậc của hai đa thức đó.
3. Lời giải chi tiết
Tích của một đa thức bậc 3 và một đa thức bậc 2 là một đa thức bậc 5.
Chọn đáp án A.
Câu 8
1. Nội dung câu hỏi
Thu gọn các tích \(A = \left( {{x^2}y + x{y^2}} \right)\left( {{x^2} - xy + {y^2}} \right)\) và \(B = \left( {x - y} \right)\left( {{x^3}y + {x^2}{y^2} + x{y^3}} \right)\), ta được:
A. \(A = {x^4}y - x{y^4}\) và \(B = {x^4}y + x{y^4}\).
B. \(A = {x^4}y + x{y^4}\) và \(B = {x^4}y - x{y^4}\).
C. \(A = x{y^4} - {x^4}y\) và \(B = {x^4}y + x{y^4}\).
D. \(A = {x^4}y + x{y^4}\) và \(B = x{y^4} - {x^4}y\).
2. Phương pháp giải
Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.
3. Lời giải chi tiết
Ta có:
\(A = \left( {{x^2}y + x{y^2}} \right)\left( {{x^2} - xy + {y^2}} \right)\)
\( = {x^2}y\left( {{x^2} - xy + {y^2}} \right) + x{y^2}\left( {{x^2} - xy + {y^2}} \right)\)
\( = {x^4}y - {x^3}{y^2} + {x^2}{y^3} + {x^3}{y^2} - {x^2}{y^3} + x{y^4}\)
\( = {x^4}y + \left( { - {x^3}{y^2} + {x^3}{y^2}} \right) + \left( {{x^2}{y^3} - {x^2}{y^3}} \right) + x{y^4}\)
\( = {x^4}y + x{y^4}\).
Tương tự
\(B = \left( {x - y} \right)\left( {{x^3}y + {x^2}{y^2} + x{y^3}} \right)\)
\( = x\left( {{x^3}y + {x^2}{y^2} + x{y^3}} \right) - y\left( {{x^3}y + {x^2}{y^2} + x{y^3}} \right)\)
\( = {x^4}y + {x^3}{y^2} + {x^2}{y^3} - {x^3}{y^2} - {x^2}{y^3} - x{y^4}\)
\( = {x^4}y + \left( {{x^3}{y^2} - {x^3}{y^2}} \right) + \left( {{x^2}{y^3} - {x^2}{y^3}} \right) - x{y^4}\)
\( = {x^4}y - x{y^4}\).
Chọn đáp án B.
Câu 9
1. Nội dung câu hỏi
Khi chia đơn thức \(2,5{x^3}{y^4}{z^2}\) cho đơn thức \( - 5{x^2}{y^4}z\) ta được kết quả là:
A. \( - 0,5x{z^2}\).
B. \(0,5xz\).
C. \( - 0,5{x^2}z\).
D. \( - 0,5xz\).
2. Phương pháp giải
Muốn chia (nhân) đơn thức A cho đơn thức B, ta làm như sau:
+ Chia (nhân) hệ số của đơn thức A cho hệ số của đơn thức B.
+ Chia (nhân) lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
+ Nhân các kết quả tìm được với nhau.
3. Lời giải chi tiết
Ta có: \(2,5{x^3}{y^4}{z^2}:\left( { - 5{x^2}{y^4}z} \right) = - 0,5xz\).
Chọn đáp án D.
Câu 10
1. Nội dung câu hỏi
Kết quả của phép chia \(5{x^3}{y^2} - 10{x^2}{y^3} + 15{x^2}{y^2}\) cho \( - 5{x^2}{y^2}\) là:
A. \( - xy + 2y - 3\).
B. \( - x + 2y - 3xy\).
C. \( - x + 2y - 3\).
D. \( - x + 2xy - 3\).
2. Phương pháp giải
Muốn chia đa thức A cho đơn thức B ta chia từng hạng tử của A cho B rồi cộng các kết quả với nhau.
3. Lời giải chi tiết
Ta có:
\(\left( {5{x^3}{y^2} - 10{x^2}{y^3} + 15{x^2}{y^2}} \right):\left( { - 5{x^2}{y^2}} \right)\)
\( = 5{x^3}{y^2}:\left( { - 5{x^2}{y^2}} \right) - 10{x^2}{y^3}\left( { - 5{x^2}{y^2}} \right) + 15{x^2}{y^2}\left( { - 5{x^2}{y^2}} \right)\)
\( = - x + 2y - 3\).
Chọn đáp án C.
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Giáo dục công dân lớp 8
Bài 7. Xác định mục tiêu cá nhân
Bài 4
CHƯƠNG 5. TIÊU HÓA
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (TỪ GIỮA THẾ KỈ XVI ĐẾN NĂM 1917)
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8