ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài tập trắc nghiệm trang 172 SBT đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
4.44
4.45
4.46

Chọn đáp án đúng:

Lựa chọn câu hỏi để xem giải nhanh hơn
4.44
4.45
4.46

4.44

Cho hàm số f(x) xác định trên khoảng K chứa a. Hàm số f(x) liên tục tại x = a nếu:

A. \(f\left( x \right)\) có giới hạn hữu hạn khi \(x \to a\)

B. \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) =  + \infty \)

C. \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = a\)

D. \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\)

Lời giải chi tiết:

Hàm số f(x) liên tục tại x = a nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\).

Chọn đáp án D.

4.45

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} + 3x + 2}}{{{x^2} + x}}\,neu\,x \ne  - 1\\3x + a\,neu\,x =  - 1\end{array} \right.\)

Với giá trị nào của tham số a thì hàm số f(x) liên tục tại x = -1?

A. a = 2         B. a = 4

C. a = 3         D. a = 6

Lời giải chi tiết:

Ta có: \(f\left( { - 1} \right) = 3.\left( { - 1} \right) + a = a - 3\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - 1} f\left( x \right) = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} + 3x + 2}}{{{x^2} + x}}\\ = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{x\left( {x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{x + 2}}{x}\\ = \dfrac{{ - 1 + 2}}{{ - 1}}\\ =  - 1\end{array}\)

Hàm số liên tục tại \(x =  - 1\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to  - 1} f\left( x \right) = f\left( { - 1} \right)\) \( \Leftrightarrow  - 1 = a - 3 \Leftrightarrow a = 2\).

Chọn đáp án: A.

4.46

Phương trình x4 - 3x2 + 1 = 0

A. Không có nghiệm trong (-1; 3)

B. Không có nghiệm trong (0; 1)

C. Có ít nhất hai nghiệm

D. Chỉ có một nghiệm duy nhất

Phương pháp giải:

Tính f(0), f(1), f(3) và nhận xét về dấu của chúng để kết luận.

Lời giải chi tiết:

Xét hàm \(f\left( x \right) = {x^4} - 3{x^2} + 1\) trên \(\left( {0;1} \right),\left( {1;3} \right)\) ta có:

Hàm số liên tục trên \(\mathbb{R}\) nên liên tục trên các khoảng đó.

\(f\left( 0 \right) = 1 > 0\)

\(f\left( 1 \right) =  - 1 < 0\)

\(f\left( 3 \right) = 55 > 0\)

Do đó \(f\left( 0 \right).f\left( 1 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {0;1} \right)\)

\( \Rightarrow \) A, B sai.

Lại có \(f\left( 1 \right).f\left( 3 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {1;3} \right)\)

\( \Rightarrow \) phương trình \(f\left( x \right) = 0\) có ít nhất hai nghiệm.

Chọn đáp án: C

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved