Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Bài tập ôn chương I. Tứ giác
Đề bài
Cho tam giác \(ABC,\) \(D\) là trung điểm của \(AB,\) \(E\) là trung điểm của \(AC.\) Gọi \(O\) là một điểm bất kì nằm trong tam giác \(ABC.\) Vẽ điểm \(M\) đối xứng với \(O\) qua \(D,\) vẽ điểm \(N\) đối xứng với \(O\) qua \(E.\) Chứng minh rằng \(MNCB\) là hình bình hành.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức:
+) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
+) Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
Lời giải chi tiết
Xét tứ giác \(AOBM:\)
\(DA = DB\) (do D là trung điểm của AB)
\(DO = DM\) (định nghĩa đối xứng tâm)
Suy ra: Tứ giác \(AOBM\) là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
\(⇒ BM // AO\) và \(BM = AO \;\;(1)\)
Xét tứ giác \(AOCN:\)
\(EA = EC\) (do E là trung điểm của AC)
\(EO = EN\) (định nghĩa đối xứng tâm)
Suy ra: Tứ giác \(AOCN\) là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
\(⇒ CN // AO\) và \(CN = AO\;\; (2)\)
Từ \((1)\) và \((2)\) suy ra: \(BM // CN\) và \(BM = CN\)
Vậy : Tứ giác \(BMNC\) là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau)
CHƯƠNG II: VẬN ĐỘNG
Bài 1. Tự hào về truyền thống dân tộc Việt Nam
CHƯƠNG 1: CƠ HỌC
Chủ đề I. Phản ứng hóa học
Unit 7. Teens
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8